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Abstract

We can fairly say that Logic (whichever you want to choose, be it propositional
or first order, classical or non-classical) is the mathematical tool used, par
excellence, to describe a structure. Modal logics, for example, are particularly
well suited to describe relational structures, especially if you are interested in
computationally well behaved formalisms (the model checking problem of the
basic modal logic is only polynomial, while its satisfiability problem is decidable
and PSPACE-complete). But why can a logic only describe a structure? In this
thesis we introduce a family of modal logics that contain operators which can
both describe and change the structure. We are interested in modal operators
that allow to change the relational model, i.e, that allow to change the structure
of a graph. In particular, we extend the basic modal language with modalities
that are able to delete, add, or swap pairs of related elements of the domain.
These dynamic operators can work locally (changing adjacent edges from the
evaluation point) or globally (modifying edges anywhere in the model). It has
been shown that the resulting logics have greater expressive power than the
basic modal language, and the complexity of their model checking problems has
been proven to be PSPACE-complete. In this thesis we address the question of
decidability. We prove that the satisfiability problems of the logics we introduce
are all undecidable.
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CHAPTER 1

Introduction

Modal logic was originally conceived as the logic of necessary and possible truths. It
is now view more broadly as the logic of different sorts of modalities, or modes of
truth: epistemic (“it is known that”), doxastic (“it is believed that”), deontic (“it
ought to be the case that”), or temporal (“it has been the case that”) among others.
Moreover, modal logic has developed into a powerful mathematical discipline that
deals with languages for talking about various kinds of relational structures.

We will start this chapter giving a brief historical overview of modal logic [Gol06]
in order to understand what have been done in the past, and at the same time
to provide some insight into how the present came to be as it is. Hopefully, this
introduction will give the reader some idea of what this thesis is going to talk about
and what new contribution to knowledge this thesis is going to make. Let us begin.

1.1 Modern Origins of Modal Logic
The origins of modal logic as a mathematical discipline can be traced back at the
turn of the twentieth century, with the work of C. I. Lewis, who tried to solve the
paradoxes of material implication using necessity and possibility. In fact there were
other people before Lewis who built logic systems for this purpose, but Lewis seems
to be the strongest link with contemporary modal logic.

The Lewis Systems

In a 1912 pioneering article, “Implication and the Algebra of Logic” [Lew12], Lewis
started to voice his concerns on the so-called “paradoxes of material implication.”
Lewis observed that the algebraic meaning of implication as used in Russell and
Whitehead’s Principia Mathematica, leads to two “startling theorems”: (1) a false
proposition implies any proposition, and (2) a true proposition is implied by any
proposition. In symbols:

(1) ¬α→ (α→ β)
(2) α→ (β → α)

For Lewis the ordinary meaning of α → β is that β can be inferred from α, an
interpretation that he considered was not subject to these paradoxes. Taking α→ β

1



Chapter 1. Introduction 2

as synonymous with ¬α ∨ β, he distinguished extensional and intensional meanings
of disjunction, providing two meanings for implication. On the one hand, extensional
disjunction is the usual truth-functional disjunction, meaning that “it is false that
α is true and β is false.” That reading gives meaning to the material (algebraic)
implication of Principia Mathematica. On the other hand, intensional disjunction
is such that at least one of the disjoined propositions is necessarily true, meaning
that “it is impossible that α is true and β is false.” That reading gives meaning to
the ordinary (strict) implication of Lewis.

In his 1918 book, “A Survey of Symbolic Logic” [Lew18], Lewis introduces a first
system meant to capture the ordinary, strict sense of implication. The 1918 system
used as primitive an impossibility operator to define strict implication. Then, in
Appendix II of the Lewis and Langford’s volume “Symbolic Logic” [LL32], the 1918
system is given a new axiomatic base. In the 1932 Appendix Lewis introduces five
different systems, S1-S5. The systems were defined with negation, conjunction, and
possibility (♦) as their primitive connectives. Intuitively, ♦α asserts that α is possibly
true. Dually, ¬♦¬α , abbreviated as �α, asserts that α is necessary true, though
Lewis made no use of the symbol � for the dual combination. For strict implication
we use the symbol ⇒, with α⇒ β being a definitional abbreviation for ¬♦(α ∧ ¬β).
Strict equivalence (α = β) is defined as (α⇒ β) ∧ (β ⇒ α).

Here are now definitions of S1-S5. Where p, q, r are propositional variables,
system S1 has the following axioms1:

(p ∧ q)⇒ (q ∧ p)
(p ∧ q)⇒ p

p⇒ (p ∧ p)
((p ∧ q) ∧ r)⇒ (p ∧ (q ∧ r))
((p⇒ q) ∧ (q ⇒ r))⇒ (p⇒ r)
(p ∧ (p⇒ q))⇒ q,

and the following rules of inference:

• Uniform substitution of formulas for propositional variables.

• Substitution of strict equivalents: from (α = β) and γ infer any formula obtained
from γ by substituting β for some occurrence(s) of α.

• Adjunction: from α and β infer α ∧ β.

• Strict detachment: from α and α⇒ β infer β.

System S2 is obtained by adding the axiom ♦(p ∧ q)⇒ ♦p to the basis for S1. S3 is
S1 plus the axiom (p⇒ q)⇒ (¬♦q ⇒ ¬♦p). S4 is S1 plus ♦♦p⇒ ♦p, or equivalently
�p⇒ ��p. S5 is S1 plus ♦p⇒ �♦p. In general, the Lewis systems are numbered
in order of strength, with S1 the weakest and S5 the strongest, weaker systems being
contained in the stronger ones.

Alternative Axiomatizations and Other Systems

Gödel in “An Interpretation of the Intuitionistic Propositional Calculus” [Göd33]
is the first to propose an alternative axiomatization of the Lewis system S4 that
separates the propositional basis of the system from the modal axioms and rules.

1Originally p ⇒ ¬¬p was included as an axiom, but was proved redundant by McKinsey in 1934.
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Gödel adds the following axioms and rules of inference to the propositional calculus.
Axiom K: �(p → q) → (�p → �q), Axiom T: �p → p, Axiom 4: �p → ��p, and
the rule of Necessitation: from α infer �α. Initially, Gödel employs an operator
B of provability, reading Bα as “α is provable,” to translate Heyting’s primitive
intuitionistic connectives, and then observes that if we replace B2 with an operator
of necessity we obtain system S4. Gödel also claims that a formula �p ∨�q is not
provable in S4 unless either �p or �q is provable, analogously to intuitionistic dis-
junction. Gödel’s claim will be proved algebraically by McKinsey and Tarski [MT48].
The translations in Gödel’s short note provided an important connection between
intuitionistic and modal logic that contributed to the development both of topological
interpretations and of Kripke semantics for intuitionistic logic. Its ideas also formed
the precursor to the substantial branch of modal logic concerned with the modality
“it is provable in Peano arithmetic that” [Boo95].

It is now standard practice to present modal logics in the axiomatic style of Gödel.
The notion of a logic refers to any set Λ of formulas that includes all truth-functional
tautologies and is closed under the rules of uniform substitution for variables and
detachment for material implication. The formulas belonging to Λ are the Λ-theorems,
and are also said to be Λ-provable. A logic is called normal if it includes axiom K and
has the rule of Necessitation. System S5 can be defined as the normal logic obtained
by adding the axiom p→ �♦p to Gödel’s axiomatisation of S4. The axiom p→ �♦p
is called the Brouwerian axiom. The smallest normal logic is commonly called K,
in honour of Kripke. The normal logic obtained by adding the axiom �p → p to
K is known as T. That system was first defined by Feys in 1937 by subtracting
axiom 4 from Gödel’s system S4. In “An Essay in Modal Logic” [vW51] von Wright
discusses alethic, epistemic, and deontic modalities, and introduces system M, which
is equivalent to Feys’ system T. The system B is the normal logic obtained by adding
the Brouwerian axiom to T. Systems K, T, S4, and S5 form a nested hierarchy of
systems, making up the core of normal modal logic.

Modal Algebras

By the time that the Lewis systems appeared, algebra was well-established as a
postulational science, and the study of the very notion of an abstract algebra was
being pursued [Bir33, Bir35]. Over the next few years, algebraic techniques were
applied to the study of modal systems using modal algebras: Boolean algebras with
an additional operation to interpret ♦.

J.C.C. McKinsey [McK41] showed that there is an algorithm for deciding whether
any given formula is a theorem of S2, and likewise for S4. His method was to show
that if a formula is not a theorem of the logic, then it is falsified by some finite model
which satisfies the logic. This property was dubbed the finite model property by
Ronald Harrop [Har58], who proved the general result that any finitely axiomatisable
propositional logic Λ with the finite model property is decidable.

McKinsey used models of the form (K,D,−,∗ , ·), called matrices, where −, ∗, ·
are operations on a set K for evaluating the connectives ¬, ♦, and ∧, while D is a
set of designated elements of K. A formula α is satisfied by such a matrix if every
assignment of elements of K to the variables of α results in α being evaluated to a
member of the subset D. A logic is characterised by a matrix if the matrix satisfies
the theorems of the logic and no other formulas. And a matrix is normal if

2The name B comes from “beweisbar,” which is the German word for “provable.”
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x, y ∈ D implies x · y ∈ D,
x, (x⇒ y) ∈ D implies y ∈ D,

(x⇔ y) ∈ D implies x = y,

where (x ⇒ y) = −∗(x · −y) and (x ⇔ y) = (x ⇒ y) · (y ⇒ x) are the operations
interpreting strict implication and strict equivalence in K. These closure conditions
on D are intended to correspond to Lewis’ deduction rules of adjunction, strict
detachment, and substitution of strict equivalents.

A matrix is a special kind of algebra. An algebra is a matrix without a set D of
designated elements. Boolean algebras correspond to matrices for propositional logic.
According to Bull and Segerberg [BS84] the generalization from matrices to algebras
may have had the effect of encouraging the study of these structures independently
of their connections to logic and modal systems. The set of designated elements D in
fact facilitates a definition of validity with respect to which the theorems of a system
can be evaluated. Without such a set the most obvious link to logic is severed. A
second generalization to classes of algebras, rather than merely to individual algebras,
was also crucial to the mathematical development of the subject matter. Tarski is
the towering figure in such development.

Jónsson and Tarski [JT51, JT52] introduce the general idea of Boolean algebras
with operators, i.e., extensions of Boolean algebras by addition of operators that
correspond to the modal connectives. They prove a general representation theorem
for Boolean algebras with operators that extends Stone’s result for Boolean algebras
(every Boolean algebra can be represented as a set algebra). This work of Jónsson and
Tarski evolved from Tarski’s purely mathematical study of the algebra of relations,
and includes no reference to modal logic or even logic in general. Jónsson and Tarski’s
theorem is a more general algebraic analog of Kripke’s later semantic completeness
results, yet this was not realized for some time.

Relational Semantics

Key ideas surrounding relational interpretations of modality had occurred to several
people. In the early 1940’s the recognition of the semantical nature of the notion of
logical truth led Rudolf Carnap to an informal explication of this notion in terms
of Leibnizian possible worlds. At the same time, he recognized that the many
syntactical advances in modal logic from 1918 on were still not accompanied by
adequate semantic considerations. Carnap’s work in the early forties [Car46, Car47]
was focused on defining a formal semantic notion of L-truth to represent the informal
semantic notions of logical truth.

Carnap introduces the apparatus of state-descriptions to define the formal se-
mantic notion of L-truth. This formal notion is then to be used to provide a formal
semantics for S5. A state-description for a language L is a class of sentences of L
such that, for every atomic sentence p of L, either p or ¬p, but not both, is contained
in the class. If S is a collection of state descriptions, and s ∈ S, then a propositional
symbol p is satisfied at s if and only p ∈ s. Boolean operators are interpreted in the
obvious way. As for the modal case, �α is satisfied at s ∈ S if and only if for all
s′ ∈ S, s′ satisfies α. Carnap’s notion of validity or L-truth is a maximal notion,
i.e., Carnap now defines a sentence to be valid or L-true if and only if it holds in all
state-descriptions.

The standard relational semantics for modal logic is based on possible worlds
semantics. Carnap’s semantics is indeed a precursor of the possible worlds approach.
Yet some crucial ingredients are still missing. First, the maximal notion of validity
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must be replaced by a new universal notion. Second, definite descriptions must
make space for possible worlds understood as indices or points of evaluation. Last, a
relation of accessibility between worlds needs to be introduced. Though Kripke is by
no means the only logician in the fifties and early sixties to work on these ideas, it is
in Kripke’s version of possible worlds semantics that all these innovations are present.
Kanger [Kan57], Montague [Mon60], Hintikka [Hin61], and Prior [Pri62] were all
thinking of a relation between worlds, and Hintikka [Hin61] like Kripke [Kri59]
adopted a new notion of validity that required truth in all arbitrary sets of worlds.
The intuitive idea behind the possible worlds model is that, besides the true state of
affairs, there are a number of other possible states of affairs, or “worlds.” Necessity
then means truth in all possible worlds. Kripke’s abstract characterization of the
worlds is crucial in the provision of a link between the model theoretic semantics
and the algebra of modal logic. Kripke saw very clearly this connection between the
algebra and the semantics, and this made it possible for him to obtain model theoretic
completeness and decidability results for various modal systems in a systematic way.
Possible worlds semantics reaches its current form with Kripke in [Kri63], which
explains why the mathematical structures that capture the possible worlds approach
are called Kripke structures. It is due to Kripke’s innovations that we now have a
model theory for intensional logics.

Providing modal logics with a model theory was a revolutionary achievement. In
the short span of time of less than fifty years, from Lewis’ pioneering work starting
in 1918 to Kripke’s work in the early 1960’s, modal logic flourished: different modal
systems were developed and advances in algebra helped to foster the model theory
for such systems. This culminated in the development of a formal semantics that
extended to modal logic the successful first-order model theoretic techniques, thereby
affording completeness and decidability results for many systems. And all these
developments, along with the adoption of modal logic by theoretical computer science,
helped to shift the view of modal logics as “intensional” formalisms that were only
able to talk about “modes of truth” to a much broader panorama, which constitutes
the current way of looking at modal logics.

1.2 On Modal Logics and Dynamic Logics

Nowadays modal logics [BdRV01, BvB06] can be thought of as a family of languages
for talking about structures or models. But what kind of structures? As you might
guess, there is no single answer to this question. For example, modal logic can be
given an algebraic semantics, and under this interpretation modal logic is a tool for
talking about Boolean algebras with operators; it can also be given a topological
semantics, so modal logic can also be view as a tool for talking about topologies.
Although there are alternative semantics, modal logic is now broadly used as a tool
for talking about graphs. This view of modal logic uses relational structures, often
called Kripke structures, and is the best known and best explored style of modal
semantics. It is also, arguably, the most intuitive. Relational semantics has been
used as a tool for reasoning about time, beliefs, computational systems, necessity
and possibility, and much else besides. All these very different areas have in common
that the fundamental concepts they need to model can be expressed in terms of
graphs-like structures. And this is fortunate as many situations can be modeled using
graphs: flow of time, relations between epistemic alternatives, transitions between
computational states, networks of possible worlds, etc. This explains why modal
logics have been used in many, diverse fields. Moreover, the range of modal logics
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known today is extremely wide, so that it is usually possible to pick and choose the
right modal logic for a particular application.

1.2.1 Basic Modal Logic

It is now time to formally meet the basic modal logic (ML) and its relational
semantics. We start by defining the syntax.

Definition 1.2.1 (Syntax of Basic Modal Logic). Let PROP be a countable, infinite
set of propositional symbols. Then the set FORM of formulas ofML over PROP is
defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ,

where p ∈ PROP and ϕ,ψ ∈ FORM. The necessity operator �ϕ is a shorthand for
¬♦¬ϕ. Other operators are defined as usual: > is ¬⊥, ϕ∨ψ is defined as ¬(¬ϕ∧¬ψ),
ϕ→ ψ is defined as ¬ϕ ∨ ψ, and ϕ↔ ψ is an abbreviation for (ϕ→ ψ) ∧ (ψ → ϕ).

Now that we have described the syntax of our language (that is, the set of
well-formed formulas), we need to define the models in which we evaluate modal
formulas. Models are just labeled directed graphs, which we call Kripke models.

Definition 1.2.2 (Kripke Models). A Kripke modelM is a tripleM = 〈W,R, V 〉,
where W is a non-empty set whose elements are called points or states; R ⊆W×W
is the accessibility relation; and V : PROP → P(W ) is a valuation. Informally we
think of V (p) as the set of points inM where p is true.

Since we already have both the syntax and the structures the language is going
to talk about, we are now ready to define the semantics, that is, we are now able
to tell whether a given formula is true or false in a model. Modal logics describe
Kripke structures from an internal perspective. This means that modal formulas
are evaluated at some particular point of the model. For this purpose we use
pointed models: pairs of the form (M, w), where w is a state inM; we usually drop
parentheses and callM, w a pointed model.

Definition 1.2.3 (Semantics of Basic Modal Logic). Given a pointed modelM, w
and a formula ϕ we say thatM, w satisfies ϕ (notation,M, w |= ϕ) when

M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ
M, w |= ♦ϕ iff for some v ∈W s.t. (w, v) ∈ R, M, v |= ϕ.

A formula ϕ is satisfiable if there exists a pointed modelM, w such thatM, w |= ϕ.
A formula ϕ is globally satisfiable in a modelM if it is satisfied at all points inM,
and if this is the case we writeM |= ϕ. A formula ϕ is valid if it is globally satisfied
in all models, and if this is the case we write |= ϕ.

The binary relation R is intended to capture the possibility relation: (w, v) ∈ R
if the state v is possible given the information in the state w. We think of R as a
possibility relation, since it defines what states are considered possible in any given
state. Note that ♦ϕ is the possibility operator with respect to R, and its dual �ϕ is
the necessity operator with respect to R, which obtains the following truth condition.

M, w |= �ϕ iff for all v ∈W s.t. (w, v) ∈ R, M, v |= ϕ.
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Figure 1.1 shows an example of a Kripke model. As we can see, the modelM
is a graph with three elements, {w, v, u}. State w is labeled by p, state u is labeled
by p and q, and state v has no label. FormallyM=〈W,R, V 〉, where W={w, v, u},
R={(w, v), (v, v), (v, u), (u, v), (u,w)}, and V (p)={w, u}, V (q)={u}.

w

p

v

u

p, qM

Figure 1.1: Example of a Kripke model.

Note that whether or not a formula is satisfied depends on where it is evaluated.
For example, in Figure 1.1, the formula ♦p is satisfied at points u and v (because
at each state there is a successor point in which p is true) but not at w. Thus
M, u |= ♦p because at u there is w ∈ W such that (u,w) ∈ R andM, w |= p, and
similarly,M, v |= ♦p because at v there is u ∈W such that (v, u) ∈ R andM, u |= p.
ButM, w 6|= ♦p because at w there is no accessible point in which p holds. Following
the same reasoning, you can verify thatM, v |= ♦(p ∧ q) andM, w |= ♦�♦p.

A few remarks are worth highlighting. First, note the internal character of the
modal satisfaction definition. Modal formulas talk about Kripke models from inside.
In first-order classical logic this is not the case, when we talk about a model, we
do so from the outside. Second, note that modal logics describe characteristics of
relational structures. Given a pointed model, the ♦ operator moves the evaluation of
the formula in its scope to some successor of the evaluation point. In this way, it is
possible to describe the model by traversing its structure.

Now that we have presentedML, we are interested in its computational behavior.
There are two main computational problems associated with modal logic. The first
problem is checking if a given formula is true in a given state of a given Kripke
structure. This problem is known as the model checking problem. The second problem
is checking if a given formula is true in some state of some Kripke structure. This
problem is known as the satisfiability problem. Both problems are decidable inML.
The model checking problem can be solved in polynomial time, while the satisfiability
problem is PSPACE-complete.

The basic modal logic has better computational properties than first-order logic.
First-order logic (FOL) is a well understood and powerful language [EFT96, End01,
Smu95]. But from a computational point of view, it is sometimes too expressive. Its
satisfiability problem is undecidable, while its model checking problem is PSPACE-
complete. Table 1.1 summarises the computational properties of both logics.

Model Checking Satisfiability
FOL PSPACE-complete Undecidable
ML Polinomial Time PSPACE-complete

Table 1.1: Computational behavior of first-order logic and modal logic.

From Definition 1.2.1 it is clear thatML can be seen as an extension of propo-
sitional logic. But we can also show thatML is a fragment of fist-order logic. In
particular, it is a fragment of first-order logic with two variables (FOL2), which
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is decidable [Sco62]. Actually, its satisfiability problem is NEXPTIME-complete as
shown by Grädel in [GKV97]. Intuitively, the states in a Kripke structure correspond
to domain elements in a relational structure, and modalities are nothing but a limited
form of quantifiers. The benefits of that limitation is that modal logic is “so robustly
decidable” [Var96].

For a number of reasoning tasks of interest, such as model checking and sat-
isfiability, the basic modal language is computationally better behaved than the
corresponding first-order language. Of course, this better computational behavior
comes about because the basic modal language is not nearly as expressive as first-
order logic: ML is a small fragment of FOL. (For instance, it is not possible to
express inML that a model has exactly three different elements, because this is not
expressible in FOL2.) Thus the pressing questions are: what are are the trade-offs?
And can this better computational behavior be lifted to more expressive modal
logics? We shall try to discuss the answers to these questions in this thesis. We will
introduce dynamic logics, as extensions of the basic modal language, which include
operators that can alter the accessibility relation of a model during the evaluation
of a formula, and we will investigate one important computational problem: the
satisfiability problem. We will see that we obtain very expressive modal languages.
In fact, if we imagine modal logic as a small boat navigating somewhere on the
border between decidability and undecidability, we will see that if we add dynamic
operators to modal logic we come to cross the border and we get to navigate on the
undecidability side.

1.2.2 Dynamic Logics

We have seen thatML allow us to describe properties of a model by traversing its
structure. In some sense, this is a dynamic behavior. Each time that we evaluate
♦ϕ, we scan for R-accessible points from the current one in search of one where ϕ is
satisfied, and we move evaluation over there. As we move the evaluation of ϕ to a
different point, we evaluate ϕ in a different pointed model, and it is precisely this
behavior which allow us to describe properties of models. But this dynamic power
seems limited as models never change after the application of certain operations. If
we want to reason about dynamic phenomena it would be interesting to be able to
change the structure.

Before moving on we should clarify our notion of dynamic logic, because some
modal operators have been devised in the past to model dynamic phenomena, but
not in the sense we just mentioned. One classical example is propositional dynamic
logic, or PDL [Lad77, FL79, Har00]. PDL is a formal system for reasoning about
programs. Originally, it was designed to formalize correctness specifications and to
prove that those specifications correspond to a particular program. PDL is a modal
logic that contains an infinite number of modalities 〈π〉, where each π corresponds
to a program. The interpretation of 〈π〉ϕ is that “some terminating execution of π
from the current state leads to a state where the property ϕ holds.” The structure of
a program is defined inductively from a set of basic programs {a, b, c, . . .} as:

• Choice: if π and π′ are programs, then π ∪ π′ is a program which executes
non-deterministically π or π′.

• Composition: if π and π′ are programs, then π;π′ is a program which executes
first π and then π′.
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• Iteration: if π is a program, then π∗ is a program that executes π a finite
number (possibly zero) of times.

• Test: if ϕ is a formula, then ϕ? is a program that tests whether ϕ holds, and
if so, continues, otherwise fails.

The semantics of PDL-formulas is straightforward: diamonds quantify existentially
over the edges of a model, choosing non-deterministically or composing edges, iterating
on the edges, or testing properties. Formally,

M, w |= 〈π〉ϕ iff for some v s.t. (w, v) ∈ Rπ,M, v |= ϕ

where Rπ is either the accessibility relation Ra corresponding to an atomic program
a, or is defined inductively as:

Rπ∪π′ = Rπ ∪Rπ′
Rπ;π′ = Rπ ◦Rπ′
Rπ∗ = (Rπ)∗
Rψ? = {(w,w) | M, w |= ψ}.

The expressive power of PDL is high (note that it goes beyond first-order logic,
as it can express the reflexive-transitive closure of a relation while first-order logic
can’t), and PDL can express some interesting properties. For example the formula

〈(ϕ?; a)∗; (¬ϕ)?〉ψ

represents that the program “while ϕ do a” ends in a state satisfying ψ. The
program inside the modality executes a a finite, but not specified number of times
after checking that ϕ holds, and after finishing the loop ¬ϕ must holds. This captures
exactly the behavior of a while loop.

Clearly, the language gives us a practical way to deal with the notion of state
and change, but this is a weak notion of dynamic behavior. PDL is dynamic in the
sense of representing executions of programs, modeling the changes of a state after
the application of an action. However, it never changes the model. In this thesis
we are interested in operators that can change the model during the evaluation of
a formula. There are many situations in which these kind of operators are used.
Operators that change the accessibility relation are appropriate to model scenarios
such as changes in the knowledge of an agent in epistemic logics. We will introduce
dynamic epistemic logics in the next section to show the kind of dynamic behavior
we are interested in.

1.3 Dynamic Epistemic Logic
We now move on to a different form of dynamics related to the topic of this thesis.
Starting from the perspective of epistemic logic (the modal logic of knowledge), we
can extend it with dynamic modal operators to model change of knowledge. The
result is known as dynamic epistemic logic (DEL). The starting point of DEL is
therefore the logic of knowledge. Let us start with this.

1.3.1 Reasoning about Knowledge

Hintikka’s book [Hin62] was one of the first works that, following von Wright’s ideas
on modal logic [vW51], formalized the concepts of knowledge and belief. Possible
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world semantics [Kri63] resulted fruitful to interpret diverse notions such as temporal,
dynamic, doxastic, deontic, and in particular, epistemic reasoning [FHMV04]. In this
way, knowledge and belief were formalized in a logical framework by using possible
world semantics: the information that some determined agent has is given in terms of
the possible worlds that are consistent with the information of that agent. Knowledge
and belief are defined in terms of the accessibility of the agent to those worlds. We
can say, for example, that an agent knows that ϕ is the case, if ϕ holds in all the
worlds accessible to the agent. Worlds in possible world semantics are nothing else
than states in Kripke models, and accessibility is represented by edges between states.

Let us define formally the syntax of the basic epistemic logic EL.

Definition 1.3.1 (Syntax of Basic Epistemic Logic). Let PROP be a countable,
infinite set of propositional symbols and AGT a finite set of agent symbols. Then the
set FORM of formulas of EL over PROP and AGT is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | Kaϕ,

where p ∈ PROP, a ∈ AGT, and ϕ,ψ ∈ FORM. Other operators are defined as usual.

EL extends the propositional language with an unary operator for each agent.
Kaϕ is interpreted as “agent a knows that ϕ.” Here, an agent may be a human being,
a player in a game, a robot, a machine, or simply a “process.” We also define the
dual operator K̂aϕ as ¬Ka¬ϕ. The fact that a does not know that ¬ϕ is pronounce
as “the agent considers it possible that ϕ.” Hence, examples of well-formed formulas
are p ∧ ¬Kap (“p is true but agent a does not know it”), and ¬KbKcp ∧ ¬Kb¬Kcp
(saying that “agent b does not know whether agent c knows p”). Sometimes we refer
to modalities instead of agents.

We now move on to the formal semantics, first defining the models in which we
evaluate epistemic formulas.

Definition 1.3.2 (Epistemic Models). An epistemic model is a Kripke model
M = 〈W, {Ra}a∈AGT, V 〉, where each Ra is a binary relation on W that is reflexive,
symmetric and transitive (an equivalence relation).

Epistemic models are Kripke models with multiple accessibility relations, one for
each agent in the language. In epistemic logics we usually focus in a particular class
of models that have certain properties, which are appropriate for the corresponding
reasoning. This class is S5, i.e., the class of models such that all their accessibility
relations are equivalence relations.

Definition 1.3.3 (Semantics of Basic Epistemic Logic). Given a pointed model
M, w and a formula ϕ we say thatM, w satisfies ϕ (notation,M, w |= ϕ) when

M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ
M, w |= Kaϕ iff for all v ∈W s.t. (w, v) ∈ Ra, M, v |= ϕ.

The clause for Ka is also phrased as “Ka is the necessity operator with respect
to Ra.” Note that the dual K̂a obtains the following truth condition, for which it is
also dubbed “a possibility operator with respect to Ra.”

M, w |= K̂aϕ iff for some v ∈W s.t. (w, v) ∈ Ra, M, v |= ϕ.
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A crucial aspect of the semantics of EL is that it uses a special case of Kripke
models. In such models, the notion of indistinguishability is of main importance. We
explain this with an example.

Suppose that there is an agent Bob (represented by the agent symbol b) who lives
in Paris. For some reason, he builds a theory about the weather conditions in both
Paris and Rome: it is either sunny in Paris (represented by the propositional symbol
p) or not (¬p), and it is sunny in Rome (represented by r) or not (¬r). There are of
course, four possible combinations of weather in parallel in the two cities, and each
of them is a possible state of the world. This situation is represented by modelM in
Figure 1.2. Since Bob lives in Paris, we can assume that he is aware of the weather
in Paris, but not of that in Rome. In other words: he cannot distinguish state {p, r}
from {p,¬r}, neither he can tell the difference between {¬p, r} and {¬p,¬r}.

Indistinguishability of agent b is represented by an edge labeled with b. An edge
from a state w to v labeled with an agent symbol b is read as “in state w, agent
b considers it possible that the state in fact is v,” or “agent b cannot distinguish
between states w and v.” The latter description refers to an equivalence relation: no
agent is supposed to distinguish w from itself; if w is indistinguishable from v then
so is v from w; and if w and v are the same for agent b, and so are v and u, then b
cannot distinguish between w and u. Note that the accessibility relation in model
M of Figure 1.2 is indeed an equivalence relation.

{p, r}

{p,¬r}

{¬p, r}

{¬p,¬r}

M

b b

bb

bb

Figure 1.2: Epistemic model representing the weather scenario.

1.3.2 Changing Knowledge

We consider as information something that is relative to a subject (the agent) who
has a certain perspective of the world. The knowledge of each agent is given by the
information that is accessible for the agent. For this reason the concept of information
change is closely related with the concept of communication, the process of sharing
information. Communication in this context involves changing the information that
the agents have, i.e., what can they observe of the world. The truth values of
propositions describing the facts of the world that are independent of the agents,
remain unchanged. Dynamic epistemic logic [vDvdHK07] is the field which studies
this kind of information change, as an extension of the basic epistemic logic.

Several languages have been defined to represent information change. We will
discuss the most basic one known as public announcement logic (PAL). PAL was
introduced in [Pla07] as an extension of EL with the operator [!ψ] which communicates
some common information to the agents.

Definition 1.3.4 (Syntax of Public Announcement Logic). Let PROP be a countable,
infinite set of propositional symbols and AGT a finite set of agent symbols. Then the
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set FORM of formulas of PAL over PROP and AGT is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | Kaϕ | [!ψ]ϕ,

where p ∈ PROP, a ∈ AGT, and ϕ,ψ ∈ FORM. Other operators are defined as usual.

The formula [!ψ]ϕ is read as “after ψ is truthfully announced, ϕ is the case.” It
means that ψ is revealed to all the agents, i.e, the announcement is public, and then
ϕ is evaluated. The dual of [!ψ] is 〈!ψ〉. The formula 〈!ψ〉ϕ therefore stands for “after
some truthful public announcement of ψ, it holds that ϕ.”

The effect of the public announcement of ψ is the restriction of the epistemic state
to all states where ψ holds, including access between states. So, “announce ψ” can
be seen as an epistemic state modifier, with a corresponding dynamic modal operator
[!ψ]. We need to add a clause for the interpretation of such dynamic operator to the
semantics:

M, w |= [!ψ]ϕ iffM, w |= ψ impliesM|ψ, w |= ϕ,

whereM|ψ = 〈W ′, R′, V ′〉 is defined as follows:

W ′ = {w ∈W | M, w |= ψ}
R′a = Ra ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′.

After making an announcement, the model is changed to a new one and evaluation
of the rest of the formula continues in the new model. Agents cannot access anymore
information which contradicts the announcement: the knowledge of the agents has
changed. Note that the propositional information contained in states (the valuation)
does not change. The only information affected is the knowledge that the agents
have of this information. This is the idea of communication. Let us see an abstract
example from [vDvdHI12] to explain how public announcements work.

Consider modelM = 〈W, {Ra, Rb}, V 〉 of Figure 1.33 modeling the uncertainty
about agents a and b, where W = {w1, w2, w3, w4}, where Ra is the reflexive clo-
sure of {(w3, w4), (w4, w3), (w1, w2), (w2, w1)}, and where, similarly, agent b can-
not distinguish w2 from w3 nor w1 from w4. We also have V (p) = {w1, w2} and
V (q) = {w1, w4}. Then,

M, w1 |= p ∧ q ∧ ¬Kaq ∧ ¬Kbp ∧ K̂aK̂b(¬p ∧ ¬q)

M

w1

p, q

w2

p

w3 w4
q

a

a

b b

Figure 1.3: An epistemic model.

3We have slightly changed our graphical notation for the most commonly used in the epistemic
logic field. As we know epistemic models involve equivalence relations, reflexive and transitive edges
are ommitted, and symmetry is implicity represented by drawing undirected lines between states.
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Now consider the announcement p ∨ q: this changes modelM to modelM1 =
M|(p∨q) as illustrated in Figure 1.4. The following is true in the pointed modelM, w1
since (1) p ∨ q is true in w1, and (2) the formula bounded by the announcement
〈!p ∨ q〉 is true inM1, w1:

M, w1 |= 〈!p ∨ q〉(¬Kaq ∧ ¬Kbp ∧ ¬K̂aK̂b(¬p ∧ ¬q))

M

w1

p, q

w2

p

w3 w4
q

a

a

b b

M1

w1

p, q

w2

p

w4
q

a

b

Figure 1.4: Changing modelM toM1 after an announcement.

Note that the knowledge of the agents has changed (the formula K̂aK̂b(¬p ∧ ¬q)
no longer holds in M1, w1). Now suppose that in M1, w1 agent a now publicly
announces the true statement that he does not know q. Since inM1, w4 agent a does
know q (because there is a reflexive edge labeled by a), this state gets eliminated
from the model, resulting in modelM2 =M1 |¬Kaq as illustrated in Figure 1.5. In
other words, one effect of agent a announcing he does not know that q, is that the
knowledge of agent b has changed: he comes to know that p! We have:

M1, w1 |= 〈!¬Kaq〉(¬Kaq ∧Kbp)

M1

w1

p, q

w2

p

w4
q

a

b
M2

w1

p, q

w2

p

a

Figure 1.5: Changing modelM1 toM2 after an announcement.

Finally, if inM2, w1 agent b announces the true proposition Kbq, we end up in
modelM3 =M2 |Kbq as illustrated in Figure 1.6. Now both agents know the same
information. So we have:

M2, w1 |= 〈!Kbq〉(Ka(p ∧ q) ∧Kb(p ∧ q))

M2

w1

p, q

w2

p

a

M3

w1

p, q

Figure 1.6: Changing modelM2 toM3 after an announcement.
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All in all, the three announcements can be made at once inM, w1, obtaining the
sequence of model changes shown in Figure 1.7. That is,

M, w1 |= 〈!p ∨ q〉〈!¬Kaq〉〈!Kbq〉(Ka(p ∧ q) ∧Kb(p ∧ q))

M

w1

p, q

w2

p

w3 w4
q

a

a

b b

M1

w1

p, q

w2

p

w4
q

a

b

M2

w1

p, q

w2

p

a

M3

w1

p, q

Figure 1.7: Changing modelM after three consecutive announcements.

With this example it should be clear that information change is represented
by changing models. In terms of Kripke models that means that the accessibility
relations of the agents have to change (and consequently the set of states of the
model might change as well). Intuitively, the idea is that if an agent considers fewer
worlds possible, then he has less uncertainty, and therefore more knowledge.

The reasoning tasks we study in this chapter, the model checking problem and the
satisfiability problem, are both decidable for PAL. The model checking problem can
be solved in polynomial time, while the satisfiability problem is PSPACE-complete.
It is known that PAL and EL have the same expressive power, and in [Lut06] it
is shown that the computational complexity of PAL coincides with that of EL.
This shows that adding a dynamic modality with public announcements to EL does
not have negative effects on computational complexity. Table 1.2 summarises the
computational properties of both logics.

Model Checking Satisfiability
PAL Polinomial Time PSPACE-complete
EL Polinomial Time PSPACE-complete

Table 1.2: Computational behavior of public announcement logic and epistemic logic.

The logic of public announcements is very simple and is a good example of the
kind of dynamic behavior we are interested to investigate in this thesis. Although
many situations can be modeled using PAL, we are not particularly interested in the
way in which we can represent change of knowledge. Instead, what is interesting to us
is the the ability of changing the model. We are interested in changing the structure
of the model by means of operators that can delete, add, and invert an edge in the
accessibility relation during evaluation. In the next chapter we will introduce these
dynamic operators as extensions of the basic modal logic, and we will see that we
obtain more expressive logics, which in contrast to PAL, do have negative effects on
computational complexity. In fact, we will see that they turn out to be undecidable.
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1.4 About This Thesis
The themes discussed in this introduction should give the reader an intuitive idea
of the topic of this thesis. We started with a brief overview of the history of modal
logic following the syntactic, algebraic, and model theoretic traditions, from Lewis’
pioneering work starting in 1918 to Kripke’s work in the early 1960’s. Next we gave
a more contemporary introduction of the subject matter by introducing the basic
modal logic along with a discussion of its computational behavior. We then moved
to the subject of dynamic logics. We briefly discussed about PDL to show that some
logics are called “dynamic” but not in the sense of changing the structure of the
model. Dynamic epistemic logics are better suited for this. We introduced public
announcement logic emphasizing that it can model dynamic phenomena through
changes in the model, and we discussed briefly about its computational behavior.

If you survived up to here, you are ready to go on. This introductory chapter was
written aiming at presenting modal and dynamic logics mainly from a computational
perspective, to lay a logical background before introducing the logics we are going to
work with on this thesis. We will introduce a family of logics defined to represent
dynamic behavior. In particular, we will investigate logics that can modify the
accessibility relation of a model during the evaluation of a formula. We call this
family relation-changing logics. We will introduce six relation-changing operators:
sabotage, which deletes edges of the model; bridge, which adds new edges, and swap,
which turns around edges. All of them are introduced in two versions: local, i.e,
modifying adjacent edges from the evaluation point, and global, changing arbitrary
edges of the model. This thesis is organized as follows:

In Chapter 2 we introduce the family of relation-changing logics. We first
introduce them informally, using dynamic epistemic logic as a motivation, and we
then present their formal syntax and semantics. By the end of the chapter we provide
some examples to show their expressive power and we give a short overview of some
known results on expressivity and computational complexity.

Chapters 3 and 4 form the core of this thesis. In Chapter 3 we study the finite
model property and we show that relation-changing logics can force infinite models.
To check this we use a spy point technique, a classical tool to prove expressiveness
results in logic. The idea is to characterize a point (the spy point) which has a
global view of the state of the model, and use it to describe the properties we
want to impose in the model. In this way we show that our logics lack the finite
model property, which is a key property to have decidability. This leads us to the
central question of this thesis: have we added enough expressive power to cross the
border of decidability? This indeed will be the case, and in Chapter 4 we provide
undecidability results for the six logics we introduce. To obtain these results we
reduce the undecidable satisfiability problem of a logic called memory logic to the
satisfiability problem of each or our logics, using again the spy point technique to
define the encodings.

Finally, we conclude in Chapter 5 giving a brief summary of this thesis and
reporting on my own experience of working on it.
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CHAPTER 2

Relation-Changing Logics

In this chapter we will introduce the logics we are going to work with on this thesis.
We will focus in modal operators that can change the accessibility relation of a model.
Other model changing operators, such as public announcement in DEL, have been
studied extensively, but arbitrarily changing the access seems appealing to investigate.
Logics with relation modifiers are used in different scenarios, and it is interesting to
study this kind of languages from an abstract perspective to know more about their
behavior.

2.1 Modal Logics over Changing Models

We have seen that epistemic logic is a modal logic for reasoning about knowledge and
belief, and that even more interesting, it can be extended with dynamic operators
to model information change. Dynamic epistemic logic is an umbrella term for a
number of extensions of epistemic logic. For instance, public announcement logic
adds the operator [!ψ] which announces some truthful information that becomes
common knowledge for the agents. This dynamic behavior is represented in the
language through changes in the model (deleting edges and states).

In contrast, the basic modal logic defined in Section 1.2.1 does not allow us to
reason about neither knowledge nor belief. It let us describe relational models in
an abstract way without giving any particular interpretation to the symbols of the
language. But why can a logic only describe a model? What about changing the
model? If we want to reason about dynamic aspects of a given situation, e.g., how the
relations between a set of elements evolve through time or through the application
of certain operations, the use of logics with classical semantics becomes less clear.
It would be interesting to model dynamic behavior in a similar manner to that of
dynamic epistemic logics, i.e., by changing the model.

We will introduce dynamic logics which include operators that can alter the
accessibility relation of a model during evaluation. As epistemic logic is the starting
point of dynamic epistemic logics, the basic modal logic will be the starting point of
our relation-changing logics.

Several relation-changing operators are interesting to us. The first one, sabotage,
has the ability to delete an edge during the evaluation of a formula. The sabotage
operator, 〈sb〉, is a ♦-like operator (to be true at a state w it requires the existence of

17
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an accessible state v where evaluation will continue) but it changes the accessibility
relation during evaluation (the pair (w, v) is deleted). A picture will help understand
the dynamics of 〈sb〉. The formula 〈sb〉�⊥ is true in a model with two related states:

M

w

〈sb〉�⊥

v

M′
w v

�⊥

Figure 2.1: Changing modelM toM′ after evaluating the 〈sb〉 operator.

As we can see in the picture, evaluation starts at state w with the arrow pointing
from w to v, but after evaluating the 〈sb〉 operator, it continues at state v with
the arrow deleted. Note that states do not change, only the accessibility relation is
changed. It is clear that the 〈sb〉 operator changes the model in which a formula is
evaluated.

The 〈sb〉 operator is local, in the sense that it modifies adjacent edges from the
evaluation point. We can also define a global operator, which allow us to change edges
anywhere in the model, not just adjacent edges. This global sabotage operator, 〈gsb〉,
was introduced by Johan van Benthem in [vB05]. A picture will help understand
the dynamics of 〈gsb〉. The formula 〈gsb〉♦�⊥ is true in a model with three related
states:

M
w

〈gsb〉♦�⊥

v u

M′
w

♦�⊥

v u

Figure 2.2: Changing modelM toM′ after evaluating the 〈gsb〉 operator.

As we can see in the picture, evaluation starts at state w with an arrow pointing
from w to v and another arrow pointing from v to u, but after evaluating the 〈gsb〉
operator, it stays in the same state w with the arrow pointing from v to u deleted.
Why? Well, the formula ♦�⊥ says that there is an accessible state which is a
dead-end. At state w the only way that this formula holds is by deleting the arrow
from v to u. Note that state u is not deleted, only the edge is deleted. And also
note that after evaluating the 〈gsb〉 operator evaluation stays in the same state as it
was before: from the evaluation point we can change arbitrary edges of the model
that need not be adjacent edges of the current point, expressing in this way global
changes. You can think of a global modality as a universal modality. Sometimes
global operators can be confusing, but things will become clearer when we present
the semantics.

We will investigate four other dynamic operators in this thesis: 〈br〉, for bridge
(in its local version), which models the opposite situation of 〈sb〉: it adds an arrow
to an inaccessible state of the model and moves evaluation over there; 〈gbr〉, which
is the global counterpart of 〈br〉; 〈sw〉, for swap (in its local version), which has the
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ability to invert the direction of a traversed arrow; and 〈gsw〉, which is the global
counterpart of 〈sw〉. We add the sabotage, bridge, and swap operators to the basic
modal logic, both in its local and global versions, and we obtain a family of six new
logics that we call relation-changing logics.

We have chosen these relation-changing operators with the intention of covering
a sufficiently varied sample of alternatives. Clearly, other operators could have
been included in this exploration, and actually some alternative choices have been
already investigated in the literature, e.g, the adjacent sabotage operator discussed
in [Roh06].

2.2 Syntax and Semantics

It is now time to formally meet the relation-changing logics and its relational semantics.
As usual, we start by defining the syntax.

Definition 2.2.1 (Syntax of Relation-Changing Logics). Let PROP be a countable,
infinite set of propositional symbols. Then the set FORM of formulas over PROP is
defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ | �ϕ,

where p ∈ PROP, � ∈ {〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}, and ϕ,ψ ∈ FORM. Other
operators are defined as usual. In particular, �ϕ is defined as ¬♦¬ϕ and �ϕ is
defined as ¬�¬ϕ.

Formulas of the basic modal language ML are those that contain only the ♦
operator besides the Boolean operators. For � ∈ {〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}
we callML(�) the extension ofML allowing also the � operator.

Formulas of ML(〈sb〉), ML(〈gsb〉), ML(〈br〉), ML(〈gbr〉), ML(〈sw〉), and
ML(〈gsw〉) are evaluated in standard relational models, and the meaning of the
operators of the basic modal logic remains unchanged. When we evaluate formulas
containing relation-changing operators, we will need to keep track of the edges that
have been modified. To that end, let us define precisely the models that we will
use. In the rest of this thesis we will use wv as a shorthand for {(w, v)} or (w, v).
Context will always disambiguate the intended use.

Definition 2.2.2 (Models and Model Variants). A model M is a triple M =
〈W,R, V 〉, where W is a non-empty set whose elements are called points or states;
R ⊆ W×W is the accessibility relation; and V : PROP 7→ P(W ) is a valuation.
Given a modelM = 〈W,R, V 〉, we define the following notations for model variants:

(sabotaging) M−S = 〈W,R−S , V 〉, with R
−
S = R\S, S ⊆ R.

(bridging) M+
B = 〈W,R+

B, V 〉, with R
+
B = R ∪B, B ⊆ (W×W )\R.

(swapping) M∗S = 〈W,R∗S , V 〉, with R∗S = (R\S−1)∪S, S ⊆ R−1.

Let w be a state inM, the pair (M, w) is called a pointed model; we will usually
drop parentheses and callM, w a pointed model.

Model variants are Kripke models in which some updates have been done in the
accessibility relation by dynamic operations. This notation will be a practical form
to present the semantics of the new operators.
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Definition 2.2.3 (Semantics of Relation-Changing Logics). Given a pointed model
M, w and a formula ϕ we say thatM, w satisfies ϕ, and writeM, w |= ϕ, when

M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ
M, w |= ♦ϕ iff for some v ∈W s.t. (w, v) ∈ R,M, v |= ϕ
M, w |= 〈sb〉ϕ iff for some v ∈W s.t. (w, v) ∈ R,M−wv, v |= ϕ
M, w |= 〈gsb〉ϕ iff for some v, u ∈W, s.t. (v, u) ∈ R,M−vu, w |= ϕ
M, w |= 〈br〉ϕ iff for some v ∈W s.t. (w, v) 6∈ R,M+

wv, v |= ϕ
M, w |= 〈gbr〉ϕ iff for some v, u ∈W, s.t. (v, u) 6∈ R,M+

vu, w |= ϕ
M, w |= 〈sw〉ϕ iff for some v ∈W s.t. (w, v) ∈ R,M∗vw, v |= ϕ
M, w |= 〈gsw〉ϕ iff for some v, u ∈W, s.t. (v, u) ∈ R,M∗uv, w |= ϕ.

ϕ is satisfiable if for some pointed modelM, w we haveM, w |= ϕ.

Relation-changing operators can delete, add or swap around edges. The formula
is then evaluated in the correspondent model variant. Note that we extend the basic
modal logic with modalities that let us perform these operations in two versions: local
and global. The local version sabotages, bridges or swaps edges moving evaluation
to a successor point, while the global version modifies edges in any part of the model
from the current evaluation point.

2.3 Some Examples
The semantic conditions for relation-changing operators look quite innocent but, as
we will see in the next examples, these logics are actually very expressive. Besides
the obvious effects of the modifiers, there are situations in which their semantics
allows us to do something else, for instance, counting the number of accessible edges.

Example 2.3.1. Besides deleting edges, the 〈sb〉 operator has no effect on acyclic
models (its behavior is exactly as a traditional ♦, as in the leftmost model). But
in models containing cycles, 〈sb〉 can count precisely the number of accessible edges
by deleting each of them. In the rightmost model, after evaluating ♦5> ∧ 〈sb〉4�⊥
starting from w′, we first go to some state at depth five, but with the second conjunct
we return to w′ destroying and counting four edges.

w w′

Example 2.3.2. This example is extracted from [Roh06], and shows the expressivity
of ML(〈gsb〉). Consider the formula [gsb]♦> ∧ 〈gsb〉〈gsb〉�⊥. The first conjunct
expresses that, if an arbitrary edge is deleted, then the evaluation point still has
an outgoing edge regardless of the removed one. The second conjunct says that
there are two edges that can be removed and such that the current position has
no longer an outgoing edge. Thus, for any pointed modelM, w, we haveM, w |=
[gsb]♦>∧〈gsb〉〈gsb〉�⊥ if and only if the point w has exactly two distinct successors.
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Example 2.3.3. The 〈br〉 operator allows us to reach isolated parts of the model:

w

¬[br]�⊥

v u t

w

v u t

Starting from w, which is a point with no successors, by evaluating ¬[br]�⊥ it is
possible to reach an isolated part of the model and continue the evaluation of the
rest of the formula. [br]�⊥ establishes that all the points that have no links from w,
have no successors. The formula is not satisfied, since there is no link from w to t
and t has a successor (in the figure we add the link from w to t, checking that u is
reachable from t).

Example 2.3.4. The 〈sw〉 and 〈gsw〉 operators leave reflexive edges unchanged:

w w

〈sw〉ϕ
〈gsw〉ϕ

ϕ

Example 2.3.5. The 〈sw〉 operator can collapse symmetric edges into a single one:

w

〈sw〉ϕ

v w v

ϕ

We start with the model on the left, where R = {wv, vw} and evaluate 〈sw〉ϕ at w.
This implies evaluating ϕ at v after the relation is updated to R∗vw = (R\wv)∪vw =
{vw}, as shown on the right. This is actually the only situation where evaluating a
〈sw〉-formula leads to a model variant where the size of the accessibility relation R
decreases. The same happens with the 〈gsw〉 operator, when it swaps a symmetric
edge.

These examples show that logics with the ability to delete, add or swap edges
of a model are quite expressive. The logics we presented in this chapter are first
introduced in [AFH12] and are further studied in Fervari’s PhD thesis [Fer14a].
In [AFH12, Fer12, Fer14a] it has been shown that adding any of the sabotage, bridge,
or swap operators to the basic modal logic increases its expressive power: a suitable
notion of bisimulation is defined, and the expressive power of the resulting logics is
investigated, showing that they the lack the tree model property and that they are
all incomparable. Moreover, in [AFH14] it is shown that the local version of swap
logic is equivalent to a fragment of first-order logic.
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Regarding its computational behavior, in [LR03a, LR03b] it is shown that the
sabotage game is PSPACE-hard and that the model checking problem of the associated
modal logic is PSPACE-complete. More recently, in [AFH12, Fer12, Fer14a] it has
been proved that the model checking problem of the six dynamic logics we presented
(sabotage, bridge, and swap, both in their local and global versions) is decidable
and PSPACE-complete. Moreover, in [AFH13] tableaux methods for checking the
satisfiability of relation-changing logics are defined. From [LR03a] we already know
that the satisfiability problem of a variation of the global version of sabotage logic with
multiple relations is undecidable, and similar results have been proved in [AFH14]
for the local version of swap logic, but there is no certainty about the other logics.
Table 2.1 summarises the known computational properties of relation-changing logics.
In this thesis we will complete this panorama.

Model Checking Satisfiability
ML(〈sb〉) PSPACE-complete ?
ML(〈gsb〉) PSPACE-complete Undecidable
ML(〈br〉) PSPACE-complete ?
ML(〈gbr〉) PSPACE-complete ?
ML(〈sw〉) PSPACE-complete Undecidable
ML(〈gsw〉) PSPACE-complete ?

Table 2.1: Computational behavior of relation-changing logics.

With the known results on expresive power, model checking, and decidability it
is natural to think that the all of the relation-changing logics are undecidable. These
are the main results of this thesis: we will prove that the satisfiability problem of
ML(〈sb〉),ML(〈gsb〉),ML(〈br〉),ML(〈gbr〉),ML(〈sw〉), andML(〈gsw〉) is unde-
cidable. Some of these results have already been published in [Fer14a] and [Fer14b].

Before moving on to the undecidability proofs itself, we will first show more
evidence on the high expressive power of the logics: we will prove that adding
relation-changing operators to the basic modal language allow us to enforce infinite
models. This means that the logics are expressive enough to cross the border of
decidability. This is the topic of the next chapter.



CHAPTER 3

Forcing Infinite Models

3.1 The Finite Model Property
In this chapter we will investigate the finite model property, a classical property of
modal logic which establishes that every satisfiable formula is satisfied in a finite
model. The basic modal language has the finite model property, or put it in another
way, it does not have the expressive strength required to force the existence of infinite
models. Let us introduce the formal definition.

Definition 3.1.1 (Finite Model Property). Let L be a modal logic andM a set
of finitely based models. We say that L has the finite model property with respect to
M if the following holds: if ϕ is a formula of L, and ϕ is satisfiable in some model
inM, then ϕ is satisfiable in a finite model inM.

In fact, the basic modal language has a rather strong form of the finite model
property: a formula is satisfied in a finite model whose size is bounded by a function
on the size of the formula.

Definition 3.1.2 (Strong Finite Model Property). Let L be a modal logic,M
a set of finitely based models, and f a function mapping natural numbers to natural
numbers. We say that L has the strong finite model property with respect to M if
the following holds: if ϕ is a formula of L, and ϕ is satisfiable in some model inM,
then there is a computable function f such that ϕ is satisfiable in a finite model in
M containing at most f(|ϕ|) states.

Then, we can introduce the following theorem for the basic modal language.

Theorem 3.1.3. ML has the strong finite model property.

Proof (Sketch). A complete proof via selection or filtration can be found in [BdRV01].
We explain in a few words the argument of the proof via filtrations. The filtration
method for modal logics is based on the following idea: given a formula ϕ and a
modelM, a finite model is defined by collapsing to a single point all the points in
M that satisfy the same subformulas of ϕ. The resulting model satisfies ϕ if and
only if the original one does. The finite model obtained by filtrations has at most
2|ϕ| states, thus we have a computable (though, unfortunately, exponential) upper
bound for the size of the finite model.

23
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The finite model property is a characteristic feature of many modal logics. The
strong finite model property provides a simple and semantic way of proving decid-
ability. This is formalized in the following theorem.

Theorem 3.1.4. If L is a modal logic that has the strong finite model property with
respect to a recursive set of modelsM, then L is decidable.

Proof (Sketch). Suppose that modal logic L has the strong finite model property.
Then for any formula ϕ there is a computable function f such that f(|ϕ|) is an
upper bound on the size of the models needed to satisfy ϕ. Now write a mechanical
procedure that takes ϕ as input, generates all the finite models belonging to M
up of size f(|ϕ|), and tests for the satisfiability of ϕ on these models (note that
as M is a recursive set we can indeed generate all such finite models). Because
ϕ is satisfiable if and only if it is satisfied in a model of size f(|ϕ|), and because
the mechanical procedure systematically generates all these models, our mechanical
procedure decides the satisfiability of L.

The finite model property can give us decidability of the logic: the strong finite
model property gives a decision procedure itself, provided there is an effective way
of recognizing finite models of the logic. But note that every modal logic that does
have the finite model property is not necessarily decidable. On the other hand, if a
modal logic does not have the finite model property, we cannot prove decidability via
finite models. For logics lacking the finite model property it may also be possible to
prove decidability results by computing with more abstract kinds of finite structure,
such as quasi-models and mosaics (for an explanation of these structures see Chapter
6 of [BdRV01]). However, if we are working with high expressive modal languages
that do not have the finite model property, undecidability can arise very easily.

The relation-changing logics we presented in Chapter 2 are very expressive because
they not only let us describe models but also allow us to change them. Adding
relation-changing operators to the basic modal language increases its expresive power,
as shown in [AFH12, Fer14a]. The challenge is to discover how much expressivity we
added. In other words, we want to know if the finite model property holds for these
logics. As you might guess, relation-changing logics lack the finite model property.
We will prove that the sabotage, bridge, and swap logics, both with local and global
effects, can enforce formulas that hold in an infinite model. These are the first results
of the thesis, and according to what we have discussed in the previous paragraph
above, we can see that these results are the first signs of undecidability.

We introduce the following theorem.

Theorem 3.1.5. ML(�) does not have the finite model property, for � ∈ {〈sb〉,
〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}.

To prove this theorem we need to show that each logic can enforce an infinite
model. Informally, we will try to write anML(�)-formula which tell us that there is
a non-empty set B of elements that forms a strict partial order, i.e., an irreflexive
and transitive set, such that every element of the set has a successor. Note that this
is very easy to specify with a first-order formula:

∀x((x, x) /∈ R) ∧ ∀x, y, z((x, y) ∈ R ∧ (y, z) ∈ R→ (x, z) ∈ R) ∧ ∀x∃y((x, y) ∈ R)

Such a simple first-order formula only has infinite models. But the infinite models we
want to enforce cannot be specified in such an easy way, they are a bit more difficult.
Remember that, in modal logic, every formula is evaluated at a particular point of
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the model, so we need to talk about a set of points that forms a strict partial order
from a particular point in the model. But, how can we write anML(�)-formula that
talks about a set of points with the desired properties that is going to be evaluated
at a unique point? Well, we will use a spy-point technique [BS95]. A spy point is a
state of the model which can access any other state in the model, and the idea is
to use it to describe the partial order set we want to enforce in the model. We will
use different kinds of spy points according to the expressivity of each language. This
technique will allow us to write formulas to enforce serial, irreflexive, and transitive
models, which implies that the models are infinite.

With these ideas in mind, we are now ready to present the formulas for enforcing
infinite models. We will do so by presenting a formula for each of the sabotage, bridge,
and swap logics, both in their local and global versions. We start with sabotage logic.

3.2 Sabotage Logic

3.2.1 Local Sabotage

We exhibit a formula ϕ, which is a conjunction of several properties:

ϕ = s ∧�¬s ∧ ♦> ∧�♦s (1)
∧ ��(s→ �¬s) (2)
∧ [sb][sb](s→ �♦s) (3)
∧ �[sb](s→ ♦¬♦s) (4)
∧ �♦¬s (5)
∧ ��(¬s→ ♦(s ∧ ¬♦s)) (6)
∧ �[sb](¬s→ [sb](s→ ��(¬s→ ♦s))) (7)
∧ ��(¬s→ [sb](s→ ♦♦(¬s ∧ ¬♦s))) (8)
∧ ��(¬s→ [sb](s→ ♦¬♦s)) (9)
∧ �[sb](s→ �(¬♦s→ �♦s)) (10)
∧ ¬♦〈sb〉(s ∧ ♦(¬♦s ∧ ♦♦(¬s ∧ ♦s ∧ ♦¬♦s))) (11)
∧ �〈sb〉(s ∧ ♦(¬♦s ∧ ♦♦(¬s ∧ 〈sb〉(s ∧ ♦(¬♦s ∧ ♦¬♦s))))) (12)

The intended model is illustrated in Figure 3.1.

¬s ¬s ¬s . . .

s

Figure 3.1: Infinite model forML(〈sb〉).

Intuitively, the idea is that we evaluate ϕ at a unique point in which the proposi-
tional symbol s is true: this is the spy point. We force the existence of arrows going
from the spy point to every successor, and arrows going from every successor back to
the spy point. Formulas (1) to (9) are mainly devoted to this task, in addition of
enforcing an infinite chain of states. We choose to define such a spy point because
ML(〈sb〉) can delete arrows: by sabotaging some of the arrows that are connected
to the spy point we can identify the visited states by simply checking if an arrow has
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been deleted. In this way we can enforce an infinite chain of states that is irreflexive
(formula (10)) and transitive (formulas (11) and (12)).

Let us now see with some level of detail how each part of ϕ works to get the
intended model. The first half of (1) establishes that s is true at the evaluation point
and that ¬s is true at every successor accessible from there (in particular, it says
that the evaluation point cannot be reflexive). The second half of (1) ensures that
there is at least one successor (making the set of states the spy point is going to talk
about not empty), and that each successor reaches an s-point. Note that the last
part of (1), namely �♦s, says that each successor reaches a point where s is true,
but this point is not necessarily the evaluation point: it could be any other point
where s might be true, as the following figure shows:

¬s
w2

s
w1

(a) Intended model

s
w3

¬s
w2

s
w1

(b) An unwanted model

Figure 3.2: Possible models for formula (1)

Formulas (2), (3) and (4) add constraints to enforce arrows back to the evaluation
point, thus making it unique. These formulas do their job by distinguishing the
evaluation point from any other s-point reachable in two steps. In particular, formulas
(2) and (3) establish that �¬s and �♦s (two conditions that hold in the evaluation
point) also hold in any other s-point reachable within two steps, but in addition to
that, formula (3) deletes the traversed arrows. These changes in the model let us
define the distinguishing property: the evaluation point always have a cycle of size
two while any other s-point reachable within two steps cannot have such a cycle.1
Then formula (4) verifies the property we have just enforced: if we have a cycle of
size two, we can traverse an arrow, delete the other, and then check for the deleted
arrow in order to know if we have returned to the point where we started. As we
know that the evaluation point is the only s-point reachable in two steps that can
have a cycle, any arrow that goes to another s-point different from the evaluation
point is not consider in the model, because does not satisfy (4). In this way, though
somewhat complicated, we get arrows back to the evaluation point as we wanted in
the first place.

Formula (5) allow us to creates an infinite chain of elements by ensuring that
each successor has an arrow to a point where ¬s is true. The intended model is
illustrated in the left hand side of Figure 3.3. Then formulas (6), (7) and (8) play
the same role as (2), (3) and (4) but now enforcing an arrow back to the evaluation
point for states accessible in two steps, as shown in the right hand side of Figure 3.3.
Formula (9) makes the evaluation point a “spy point”: any point accessible in two
steps from the evaluation point can also be accessible in one. In Figure 3.3b this
means that it forces the existence of an arrow going from w1 to w3, thus making w3
a successor of w1. But then if w3 is a successor, in particular satisfies formula (5),

1In Figure 3.2a we can see that we have a cycle between w1 and w2, while in Figure 3.2b we
cannot have such a cycle between w2 and w3: this is the property that distinguishes w1 from w3. In
particular, we are saying that there cannot be an arrow from w3 to w2.
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¬s
w2

¬s
w3

s
w1

(a) Intended model for (5)

¬s
w2

¬s
w3

s
w1

(b) Intended model for (6), (7) and (8)

Figure 3.3: Intended model for formulas (5), (6), (7) and (8)

meaning that there must be an arrow from w3 to another point, call it w4, such that
¬s is true; and w4 in particular satisfies formulas (6), (7) and (8), meaning that w4
must have an arrow to w1; and w4 also satisfies formula (9), meaning that w4 is now
a successor of w1; but as w4 is now a successor point, then it must have an arrow to
a point w5 satisfying the previous formulas. This process goes on forever, creating an
infinite chain of states where the spy point can access any other point in the model.

Note that it is possible for formula (5) to enforce reflexive arrows. So in order to
obtain an infinite model it remains to ensure that the set of states the spy point is
talking about is irreflexive and transitive. Formula (10) enforces irreflexivity: after
going to any successor and deleting the arrow that goes to the spy point (identifying
in this way the point we are visiting), all the successors of the visited state can only
see a state that satisfies s (the spy point). If the state were reflexive, after doing one
loop it wouldn’t be possible to reach the spy point, because we deleted the arrow
to access it. Hence the visited state has to be irreflexive. Formula (12) enforces
transitivity: if from one point we have an arrow to a second point, and from the
second we have an arrow to a third, then we have an arrow from the first point to
the third. We achieve this by identifying the first and third points, i.e, by deleting
the corresponding arrows that go to the spy point, and then we enforce an arrow
from the first to the third point, given that we have a point in the middle that acts
as a bridge. By the way in which we do this, it is possible to enforce an arrow that
goes from the third point to the first, something we clearly don’t want. To avoid
this situation there is formula (11) to provide the needed help: it ensures that there
are no three elements of the infinite chain of states that form a cycle (again, we do it
by deleting some arrows). Thus formulas (11) and (12) together enforce a transitive
set of points.

Proposition 3.2.1. LetM = 〈W,R, V 〉 be a model and s ∈W a point of the model.
IfM, s |= ϕ thenM is infinite.

Proof. SupposeM, s |= ϕ. Let B = {w ∈W | (s, w) ∈ R}. Because (1) is satisfied,
s /∈ B, B 6= ∅, and for all w ∈ B there is w′ ∈W such that (w,w′) ∈ R and w′ ∈ V (s).
As (2), (3), and (4) are satisfied, w′ = s, meaning that for all w ∈ B, (w, s) ∈ R. As
(5) is satisfied at s, every point in B has an R-successor distinct from s, and because
(6), (7), and (8) are satisfied, such R-successor of B has an edge to s. Because (9)
is satisfied, if w 6= s and w is an R-successor of an element of B then w is also an
element of B. As (10) is satisfied at s, every point in B is irreflexive; and because
(11) and (12) are satisfied, R transitively orders B. Hence B is an unbounded strict
partial order, thus B is infinite and so isM.

Proposition 3.2.2. There is an infinite modelM and a point s such thatM, s |= ϕ.
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Proof. Let (N, <) be the natural numbers in their usual order, and suppose s /∈ N.
LetM = 〈W,R, V 〉 be a model where W is N ∪ {s}, R is < ∪{(s, n), (n, s) | n ∈ N},
and V is any valuation such that V (s) = {s} and V (n) ∩ V (s) = ∅, for n ∈ N. It is
clear thatM, s |= ϕ. Thus ϕ has at least one infinite model.

3.2.2 Global Sabotage

We exhibit a formula ϕ, which is a conjunction of several properties:

ϕ = s ∧�¬s ∧ ♦> (1)
∧ �(♦s ∧ 〈gsb〉¬♦s) (2)
∧ �♦¬s (3)
∧ ��(¬s→ ♦s ∧ 〈gsb〉¬♦s) (4)
∧ [gsb](♦(♦s ∧ ♦(¬s ∧ ¬♦s)) → ♦¬♦s) (5)
∧ [gsb]�(¬♦s→ �♦s) (6)
∧ [gsb]¬♦(¬♦s ∧ ♦♦(¬s ∧ ♦s ∧ ♦¬♦s)) (7)
∧ [gsb][gsb](♦(¬♦s ∧ ♦♦(¬s ∧ ¬♦s)) → ♦(¬♦s ∧ ♦¬♦s)) (8)

We enforce an infinite model in a similar way to that ofML(〈sb〉), except that
now the s-successors in two steps may be different from the spy point, as illustrated
in Figure 3.4.

¬s ¬s ¬s
. . .

s s s

s

Figure 3.4: Infinite model forML(〈gsb〉).

Take into account that when we evaluate a formula with a global operator, such
as 〈gsb〉, we do not move to an accessible state in which evaluation continues (as is
the case for the local operators, such as 〈sb〉), instead, we stay in the same state and
evaluation continues where we are at. This allow us to change the structure from the
current point so that we can later traverse it looking for the changes we made. More
precisely, looking at Figure 3.4, we can identify the successors of the spy point by
deleting the arrows that are pointing to s-points: from the spy point, we can delete
the arrows with the global sabotage operator, and then we can traverse the chain of
states looking for the deleted arrows. Note that there is no need to enforce arrows
returning to the spy point, we only need to enforce that each successor has an arrow
to an s-point. As our intention is to delete those arrows, tough, we need to ensure
that such arrows are unique. It’s like if each point of the infinite chain had a flag
that could be turned on or off to identify a point.

With these observations we can see that formula ϕ is similar to the one of
ML(〈sb〉), except that (2) establishes that in one step, there is an s-successor which
is unique, and (4) is the same as (2) but in two steps. With formula (3) we enforce a
serial chain of states; formula (5) makes the evaluation point a “spy point”; formula
(6) ensures that each successor is irreflexive; and finally, formulas (7) and (8) together
ensure transitivity.
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Note that from (2) on each part of ϕ begins with �ψ or [gsb]ψ, meaning that ψ
is true at all points of the chain. Hence the spy point can access any state, describing
and changing the model.

3.3 Bridge Logic

We now move on to another kind of relation-changing operator: the one which can
create arrows to inaccessible states.

3.3.1 Local Bridge

We exhibit a formula ϕ, which is a conjunction of several properties:

ϕ = s ∧ [br]¬s ∧ 〈br〉> (1)
∧ �[br]¬s (2)
∧ ��s (3)
∧ �[br]�¬s (4)
∧ [br]♦> (5)
∧ [br][br](s→ �(¬s→ �(¬s→ �¬s))) (6)
∧ [br]��[br](s→ ♦(¬s ∧ ♦♦s)) (7)

The intended model is illustrated in Figure 3.5, where the dotted lines represent
the arrows created with the 〈br〉 operator.

¬s ¬s ¬s . . .

s s

Figure 3.5: Infinite model forML(〈br〉).

Intuitively, the idea is that we basically have two set of points: the set of points
in which s is true, and the set of points in which ¬s is true. The first set (located
at the bottom of Figure 3.5) forms a connected component, and even though there
may be several s-points connected among them, we force only one of those points
to be the spy point. The second set (located at the top of Figure 3.5) is the partial
order set the spy point is going to talk about: a set of inaccessible states. Formulas
(1) to (5) are mainly devoted to enforce these kind of sets, in addition of creating
and infinite chain of states. We choose to define such a model because ML(〈br〉)
can create edges: as we have inaccessible points, we can create arrows to access
those points. On the other hand, because we cannot create an arrow with the 〈br〉
operator if it is already present, we force the existence of a set of s-points that are
all connected, so that the only arrows we can create go to ¬s-states. In this way we
can enforce an infinite chain of states that is irreflexive (formula (6)) and transitive
(formula (7)).

Let us now see with some level of detail how each part of ϕ works to get the
intended model. Formula (1) establishes that s is true at the evaluation point and
that ¬s is true at any inaccessible state from there (in particular, it says that the
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evaluation point is reflexive). The last part of (1), namely 〈br〉>, ensures that there
is at least one inaccessible state, making the set of states the spy point is going to
talk about not empty.

Formulas (2), (3), and (4) are of the form �ψ, meaning that ψ is true at all
successors: if present, these states cannot be states where ¬s is true because they are
inaccessible from the evaluation point, so formulas (2), (3), and (4) talk about the
set of s-states. In particular, formula (2), where ψ = [br]¬s, ensures that there are
no unconnected states, making the set of points satisfying s a connected component.
Formula (3), where ψ = �s, which can also be rewritten as ψ = ¬♦¬s, says that every
s-state of the set has inaccessible ¬s-points, while formula (4), where ψ = [br]�¬s,
which can also be rewritten as ψ = [br]¬♦s, says that there are no arrows from
inaccessible states incoming into the connected component satisfying s. Observe
that, in Figure 3.5, we have only drawn two points from the set of s-states, one of
them (the left one) being the spy point. But this set might have one, two, three or
more points, all of them connected between each other.

Formulas (5), (6), and (7) are of the form [br]ψ, meaning that ψ is true at all
states that are inaccessible from the evaluation point, so formulas (5), (6), and (7)
talk about the set of ¬s-states. In particular, Formula (5) creates an infinite chain
of inaccessible states, while formula (6) ensures that those states are irreflexive:
after creating arrows back and forth from the spy point to any inaccessible state
(identifying in this way the point we are visiting), all the successors of the visited
state cannot see a state that satisfies s, i.e., cannot see the spy point. If the state
were reflexive, after doing one loop it would be possible to reach the spy point,
because we created the arrow to access it. Hence the visited state has to be irreflexive.
Finally, formula (7) ensures transitivity: the idea is that we can create an arrow to
an inaccessible state, call it w1, we can move two steps to reach another state, call it
w3, and from there we can create a new arrow back to the evaluation point. Then
we force the existence of an arrow from w1 to w3 by traversing the created arrows.

From formulas (6) and (7) it should be clear how we identify the spy point from
the other s-points: from the evaluation point, we use the bridge operator to create an
arrow to an inaccessible state, i.e., to a state in which ¬s is true, and from there or
another ¬s-point, we use again the bridge operator to create an arrow to an s-point,
which should satisfy a formula of the form ♦¬s. As we had already created an arrow
to a ¬s-state from the spy point, this is the only s-point that can satisfy the latter
formula.

Proposition 3.3.1. LetM = 〈W,R, V 〉 be a model and s ∈W a point of the model.
IfM, s |= ϕ thenM is infinite.

Proof. SupposeM, s |= ϕ. Let B = {w ∈W | (s, w) /∈ R}. Because (1) is satisfied,
s /∈ B and B 6= ∅. As (2), (3), and (4) are satisfied, we have (s, s) ∈ R, (s, w) /∈ R,
and (w, s) /∈ R, respectively, for w ∈ W . These three formulas ensure that s is
reflexive, and that the points of B cannot access or be accessed by s. As (5) is
satisfied, every point in B has an R-successor, which by (3) and (4) is isolated from
s. As (6) is satisfied, every point in B is irreflexive; and because (7) is satisfied,
R transitively orders B. Hence B is an unbounded strict partial order, thus B is
infinite and so isM.

Proposition 3.3.2. There is an infinite modelM and a point s such thatM, s |= ϕ.

Proof. Let (N, <) be the natural numbers in their usual order, and suppose s /∈ N.
LetM = 〈W,R, V 〉 be a model where W is N ∪ {s}, R is < ∪{(s, s)}, and V is any
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valuation such that V (s) = {s} and V (n) ∩ V (s) = ∅, for n ∈ N. It is clear that
M, s |= ϕ. Thus ϕ has at least one infinite model.

3.3.2 Global Bridge

We exhibit a formula ϕ, which is a conjunction of several properties:

ϕ = s ∧�¬s ∧ ♦> (1)
∧ ��¬s (2)
∧ �♦¬s (3)
∧ ��(¬s→ �¬s) (4)
∧ [gbr](♦(¬♦s ∧ ♦♦s) → ♦♦s) (5)
∧ [gbr]�(♦s→ �¬♦s) (6)
∧ [gbr]¬♦(♦s ∧ ♦(¬s ∧ ♦(¬s ∧ ¬♦s ∧ ♦♦s))) (7)
∧ [gbr][gbr](♦(♦s ∧ ♦(¬s ∧ ♦(¬s ∧ ♦s))) → ♦(♦s ∧ ♦♦s)) (8)

We enforce an infinite model in a different way to that of ML(〈br〉), but in a
similar way to that ofML(〈gsb〉), as illustrated in Figure 3.6.

¬s ¬s ¬s . . .

s

Figure 3.6: Infinite model forML(〈gbr〉).

With ϕ as defined above we model the exact opposite situation of the global
sabotage operator. In the model ofML(〈gsb〉) of Figure 3.4, we have arrows pointing
to s-points for each state reachable from the evaluation point. We did that because
we identified the successor points by deleting those arrows. Now, with the 〈gbr〉
operator we can model the same situation but creating arrows instead of deleting
them. So we enforce that arrows pointing to s-states cannot exist: in this way we
can create arrows to those points to identify the successor states.

Formula ϕ is similar to the one ofML(〈gsb〉), except that (2), which can also
be rewritten as �¬♦s, establishes that in one step, there are no s-successors, and
(4) is the same as (2) but in two steps. The rest of the formulas of ML(〈gbr〉)
are analogous to the formulas of ML(〈gsb〉). In fact, except for a small detail in
formula (8), we can obtain formula ϕ ofML(〈gbr〉) from formula ϕ ofML(〈gsb〉)
by replacing every occurrence of [gbr] for [gsb], every occurrence of ¬♦s for ♦s, and
every occurrence of ♦s for ¬♦s.

3.4 Swap Logic

We now enforce infinite models for the last kind of relation-changing operator: the
swap operator. Define �0ϕ as ϕ, �n+1ϕ as ��nϕ, and let �(n)ϕ be a shorthand for∧

1≤i≤n�
iϕ.

We exhibit a formula ϕ taken from [AFH14], which is a conjunction of several
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properties:

ϕ = s ∧�(9)¬s ∧ ♦> ∧�♦> (1)
∧ [sw][sw](¬s→ ♦♦♦♦♦s) (2)
∧ [sw]��¬s (3)
∧ [sw][sw][sw](¬♦s→ ♦♦♦(¬s ∧ ♦♦♦s)) (4)

We exhibit another formula ϕ′, which is a variant of the previous one, adapted
for the global operator:

ϕ′ = s ∧�(9)¬s ∧ ♦> ∧�♦> (1)
∧ ��[gsw][gsw]��(s→ ♦♦♦s) (2)
∧ �[gsw](♦s→ ��¬s) (3)
∧ ���[gsw][gsw][gsw](♦♦♦s→ ♦♦♦(¬s ∧ ♦♦♦s)) (4)

The intended model is illustrated in Figure 3.7.

¬s ¬s ¬s . . .

s

Figure 3.7: Infinite model forML(〈sw〉) andML(〈gsw〉).

Intuitively, the idea is that we can enforce a infinite chain of states by ensuring
that the propositional symbol s is true only at the evaluation point, and false in all
other states reachable from there. The spy point sees all the points of the model, but
the rest of the points cannot see it. Then, ϕ enforces specific properties on the model,
locating states by their distance to the spy point using formulas of the form ♦ . . .♦s,
after swapping an outgoing edge from the spy point. In this way, it is possible to
enforce seriality, irreflexivity, and transitivity on a chain of states. The conjunction
of these three properties can only be satisfied in an infinite model.

Let us now see with some level of detail how each part of ϕ works to get the
intended model. The first half of (1) makes s true at the evaluation point and false
at all states accessible within 9 steps. The second half of (1) ensures that there is at
least one successor (making the set of states the spy point is going to talk about not
empty), and that each successor reaches some successor.

Formula (2) tells that from any state reachable in two swapping steps, it is
possible to go back to the evaluation point in five steps. But this is only possible
by first going to the evaluation point in two steps, then going to the visited point
in one step, and finally going again to the evaluation point in two steps. Hence all
states accessible in two steps from the evaluation point are also accessible in one.
This makes the evaluation point a “spy point,” i.e., it is directly connected to every
state in the submodel generated from it.

Formula (3) enforces irreflexivity: after swapping any outgoing edge from the spy
point and arriving some reachable state (identifying in this way the point we are
visiting), all the successors of the visited state can only see states that do not satisfy
s. If the state were reflexive, after doing one loop it would be possible to reach a
state that satisfies s (the spy point), because we arrived to this state from the spy
point by swapping an arrow. Hence the visited state has to be irreflexive. Finally,
formula (4) enforces transitivity: it does so by enforcing the same property as (3)
but now on the successors of the spy point.
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Formula ϕ enforces seriality, irreflexivity, and transitivity on a chain of states
for the local variant of swap logic. Formula ϕ′ does the same as formula ϕ, the
only difference in ϕ′ is the use of the global operator, which in turn mimics the
local operator. For local swap we first turn around edges with formulas of the form
〈sw〉 . . . 〈sw〉ψ and then we return to the point where we started with an equal number
of modalities of the form ♦ . . .♦ψ. For global swap we can mimic this effect by doing
it in the opposite direction, i.e, we first move forward to a state with formulas of
the form ♦ . . .♦ψ and then we swap around edges, from the point where we are at,
with an equal number of modalities of the form 〈gsw〉 . . . 〈gsw〉ψ. As we have turned
around the same amount of edges that we have traversed we can enforce formulas
that let us go back to the point where we started. In this way, the global operator
mimics the formulas of the local operator.

Proposition 3.4.1. LetM = 〈W,R, V 〉 be a model and s ∈W a point of the model.
IfM, s |= ϕ thenM is infinite.

Proof. SupposeM, s |= ϕ. Let B = {w ∈W | (s, w) ∈ R}. Because (1) is satisfied,
s /∈ B, B 6= ∅, and every point in B has an R-successor distinct from s. Because (2)
is satisfied, if w 6= s and w is an R-successor of an element of B then w is also an
element of B. As (3) is satisfied, every point in B is irreflexive; and because (4) is
satisfied, R transitively orders B. Hence B is an unbounded strict partial order, thus
B is infinite and so isM.

Proposition 3.4.2. There is an infinite modelM and a point s such thatM, s |= ϕ.

Proof. Let (N, <) be the natural numbers in their usual order, and suppose s /∈ N.
LetM = 〈W,R, V 〉 be a model where W is N ∪ {s}, R is < ∪{(s, n) | n ∈ N}, and
V is any valuation such that V (s) = {s} and V (n) ∩ V (s) = ∅, for n ∈ N. It is clear
thatM, s |= ϕ. Thus ϕ has at least one infinite model.

To sum up, in this chapter we showed that relation-changing logics lack the finite
model property by presenting formulas that can only be satisfied in infinite models.
The idea was to use a spy point technique. A spy point, as we saw in this chapter, is
a unique state from which we can describe and change the model; we used different
kind of spy points according to the expressivity of each logic. For 〈sb〉 we used a
spy point that is connected back and forth with every point of the model; for 〈br〉
we defined a spy point that is disconnected from every point of the infinite chain;
and for 〈sw〉 we used a spy point that can reach (but cannot be reached by) all the
points of the model. Defining spy points with the global versions of sabotage, bridge,
and swap was more easy because the global operators can change edges anywhere in
the model, and therefore are more expressive. For 〈gsb〉 we used a spy point that
can see (but cannot be seen by) all the points of the model, and additionally, we
forced the existence of a particular arrow in each point of the infinite chain so that
we can later delete it in order to identify the states; for 〈gbr〉 we defined a spy point
in a similar way to that of 〈gsb〉, but modeling the opposite situation: we forced the
non-existence of a particular arrow in each point of the infinite chain so that we can
later create it in order to identify the states; and for 〈gsw〉 we used the same spy
point as for the local swap operator aiming at mimicking its behavior. After defining
the spy points, we wrote formulas to enforce serial, irreflexive, and transitive models,
implying that the models are infinite.

As we discussed at the beginning of this chapter, the finite model property is a
key property to have decidability. The ability to enforce infinite models shows that
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the logics are very expressive, and we will see that it is due to this high expressive
power that they can cross the border of decidability. We will prove undecidability
for relation-changing logics in the next chapter.



CHAPTER 4

Undecidability Results

4.1 The Satisfiability Problem

A classical problem that is interesting to investigate when we study logic is the
satisfiability problem: given a formula ϕ, is ϕ satisfiable in some model? Informally,
a logic is said to be decidable if the satisfiability problem is decidable. That is, it is
possible (ignoring constraints of time and space) to write a computer program which
takes a formula as input, and halts after a finite number of steps and correctly tells
us whether it is satisfiable in some model or not. If we cannot write such a computer
program to decide the satisfiability problem, the logic is said to be undecidable.

In this chapter we will prove that the sabotage, bridge, and swap logics, both
with local and glocal effects, are undecidable. The question then is: how do we
prove undecidability? Given a modal satisfiability problem S, to prove that S in
undecidable we must reduce some known undecidable problem U to S. But which
problems are the interesting candidates for reduction? Unsurprisingly, there is no
single best answer to this question. There are many candidates for making the
reduction, but certain problems are particularly suitable to modal logic: tiling
problems are a nice example [Wan61, BGG01].

4.1.1 Undecidability via Tiling

A tiling problem is in essence a jigsaw puzzle. A tile t is simply a 1 × 1 square, fixed
in orientation, each side of which has a color; we refer to these four colors as right(t),
left(t), up(t), and down(t). The general form that tiling problems take is: given a
finite set T of distinct types of tile, can we cover a certain part of Z× Z in such a
way that adjacent tiles have the same color on the neighboring sides? Covering a grid
with tiles so that adjacent colors match is called tiling. This simple idea of patter
matching underling tiling problems gives rise to a family of problems which can be
used to demonstrate undecidability and complexity results (see [Har85, Har86] for a
demostration of the flexibility of the method as a tool for measuring the complexity of
logics). In particular, the N×N tiling problem is: given a finite set of tile types T , can
T tile N×N? This problem is hard, and in fact it is known to be undecidable (proofs
that the N×N tiling problem is undecidable can be found in [Ber66, Rob71, LP97]).

We first attempted to prove undecidibility for relation-changing logics via a

35
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reduction of the N×N tiling problem, obtaining the desired results: the logics turned
out to be undecidable. We outline this proof in the following theorem.

Theorem 4.1.1. The satisfiability problem of ML(�) is undecidable, for � ∈
{〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}.

Proof (Sketch). We proceed by reducing the N × N tiling problem to the ML(�)
satisfiability problem. Let T = {T1, . . . , Tk} be the given set of tile types. The idea
is to construct a formula ϕT such that T tiles N× N if and only if ϕT is satisfiable.

To encode the N × N tiling problem into theML(�) satisfiability problem we
use three modalities: 〈s〉, 〈u〉, and 〈r〉. We use the 〈s〉 modality to define a spy point
(i.e, the point of evaluation have access in one 〈s〉-step to any reachable state in the
model), and we use the 〈u〉 and 〈r〉 modalities to represent movement up and to the
right, respectively, from one tile to the other; we also encode each type of tile with a
fixed propositional symbol ti. With this encoding the construction of ϕT proceeds
in three steps. First, we use each ML(�)-ability of changing the model to define
the spy point and to demand grid-like models (this is the hardest part of the proof).
Second, we show how to use eachML(�) to demand that a tiling exists on this grid.
Finally, we show that adjacent tiles have the same color on the common side.

As we succeeded in constructing a formula ϕT such that T tiles N×N if and only if
ϕT is satisfiable, it follows that theML(�) satisfiability problem is undecidable.

Proving undecidability is something of an art: it can be very difficult, and there
is no substitute for genuine insight into the satisfiability problem. The N× N tiling
problem is an interesting candidate for reduction that was useful to us for proving
undecidability of relation-changing logics. This first attempt was very successful
and gave us some insight on the behavior and high expressivity of the logics, but
we are not going to show the full proof in this thesis. Instead, we are going to
present the proofs of undecidability by reducing a different undecidable problem: the
satisfiability problem of memory logics. Before explaining why this approach gave us
better results, let us first meet memory logics.

4.1.2 Memory Logics

Memory logics are modal logics extended with the ability to store the current state
of evaluation into a set (the memory) and to check whether the current state of
evaluation belongs to this set or not. The original idea was introduced in [Are07]
and was further studied in Mera’s PhD thesis [Mer09]. There are several memory
logics, we will just introduce the simplest one formally.

Definition 4.1.2 (Syntax of Memory Logic). Let PROP be a countable, infinite set
of propositional symbols. Then the set FORM of formulas over PROP is defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | ♦ϕ | r©ϕ,

where p ∈ PROP and ϕ,ψ ∈ FORM. Other operators are defined as usual.
We callML( r©, k©) the extension ofML allowing also the r© and k© operators,

which stand for “remember” and “known,” respectively.

We now move to the formal semantics. A modelM = 〈W,R, V,M〉 is an extension
of a Kripke model with an extra set M ⊆W . Models of memory logics are Kripke
models but with a memory M in which we can store the current state of evaluation.
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Definition 4.1.3 (Semantics of Memory Logic). Let w be a state of the model, we
inductively define the notion of satisfiability of a formula as:

〈W,R, V,M〉, w |= ⊥ never
〈W,R, V,M〉, w |= p iff w ∈ V (p)
〈W,R, V,M〉, w |= k© iff w ∈M
〈W,R, V,M〉, w |= ¬ϕ iff M, w 6|= ϕ
〈W,R, V,M〉, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ
〈W,R, V,M〉, w |= ♦ϕ iff for some v ∈W s.t. (w, v) ∈ R, M, v |= ϕ.
〈W,R, V,M〉, w |= r©ϕ iff 〈W,R, V,M ∪ {w}〉, w |= ϕ

A formula ϕ ofML( r©, k©) is satisfiable if there is a model 〈W,R, V, ∅〉 such that
〈W,R, V, ∅〉, w |= ϕ. The empty initial memory ensures that no point of the model
satisfies the unary predicate k© unless a formula r©ϕ has previously been evaluated
there.

Note that when we evaluate r©ϕ, the remember operator changes the model (a
new state is added to the memory), and ϕ is evaluated in the modified model. The
k© operator simply checks if the current state of evaluation is in the memory or not.
ThusML( r©, k©) allow us to model dynamic behavior through an explicit memory
operator that changes the evaluating structure.

While relation-changing logics allow us to change the model through operators that
change the accessibility relation, memory logics allow us to change the model through
operators that change the memory. Note the analogy between these two families of
dynamic logics: both are extensions of the basic modal logic and increase its expressive
power [Fer14a, Mer09]. In particular, the model checking problem of ML( r©, k©)
has been proven to be PSPACE-complete [AFGM09, Mer09], i.e., it is decidable
and has the same complexity asML(�), for � ∈ {〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}.
On the other hand, the satisfiability problem ofML( r©, k©) has been shown to be
undecidable via a reduction of the N× N tiling problem [AFFM11, AFFM08] in a
similar way as we did for the proof of Theorem 4.1.1. It seems natural, then, that
the satisfiability problems of sabotage, bridge, and swap logics are also undecidable.
That is what we will prove in this chapter, but before moving on let us first see an
example to explore further the relationship between these two kind of dynamic logics.

Consider model M = 〈W,R, V, ∅〉 of Figure 4.1, where W = {w1, w2}, R =
{(w1, w2), (w2, w1), (w2, w2)}, and where there are no propositional symbols.

w1 w2

Figure 4.1: Example model.

At w1 we can evaluate the formula ♦♦>. That is, we can go to a successor of
w1, which is w2, and from there we have two options: we can return to w1 or we can
stay in w2. How can we distinguish that after reaching w2 we can go to a successor
different from itself? We can use memory operators to distinguish this situation. We
can check whether the formula

r©♦♦ k©
is satisfiable at w1. What is this formula doing? First, it uses r© to remember the
current point of evaluation, adding w1 to the memory. That means that the previous
model turns intoM′ = 〈W,R, V,M = {w1}〉. Graphically, we model a remembered
point with a black node:
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w1

r©♦♦ k©

w2

M

w1

♦♦ k©

w2

M′

Figure 4.2: Changing the model withML( r©, k©).

So now the remaining formula ♦♦ k© is evaluated inM′. To be satisfiable, this
formula needs a w1-successor, which is w2, and from there needs another succesor wi
such that wi ∈M , for i = 1, 2. Because w1 is in the memory inM′, that successor
wi must be w1. Observe that if we had not memorized w1, after reaching w2 we
would not be sure if the next successor is in fact different from w2. Storing points
in the memory is equivalent to labeling a node as “visited” so that later on we can
check if the current point of evaluation has been visited before.

So far, so good. Now we want to show that we can express the same situation
in a standard Kripke model, without an additional memory. How? Changing the
accessibility relation instead of changing the memory. Consider modelM = 〈W,R, V 〉
as defined before but without the set M . In the model of Figure 4.1, we can simulate
the formula r©♦♦ k© of ML( r©, k©) with a formula of ML(〈sb〉). We can check
whether the formula

〈sb〉♦¬♦>
is satisfiable at w1. As you can see, the 〈sb〉 operator is used to go to a successor
while we delete the traversed arrow. Deleting the adjacent edge of w1 can be seen as
equivalent as remembering w1. After evaluating the sabotage operator the previous
model turns intoM′ = 〈W,R\{(w1, w2)}, V 〉:

w1

〈sb〉♦¬♦>

w2

M

w1 w2

♦¬♦>

M′

Figure 4.3: Changing the model withML(〈sb〉).

So now the remaining formula ♦¬♦> is evaluated at w2 inM′. To be satisfiable,
this formula needs a successor such that ¬♦> holds, i.e., a successor that does not
have a successor. As we deleted the successor of w1, the formula is satisfiable only
at w1. Observe that if we had not deleted the successor of w1, after reaching w2 we
would not be sure if the next successor is in fact different from w2. Deleting the
successor of w1 can be seen as storing w1 into a memory, and checking for the deleted
arrow can be seen as “knowing” if w1 is indeed in the memory.

In a similar way, we can define memory logic models in which we can simulate
the r© and k© operators with standard Kripke models using operators that can swap
and add edges, so that later on we can check for the edges that have been swapped
or added. Hence, the undecidable satisfiability problem ofML( r©, k©) seems a good
candidate for making the reductions in the undecidability proofs.

Now that we have presented memory logics, let us go back to the discussion of
undecidability. To prove that relation-changing logics are undecidable, we attacked
the problem in two different ways: by encoding the N × N tiling problem, and by
encoding the satisfiability problem ofML( r©, k©). The N×N tiling problem was our



Chapter 4. Undecidability Results 39

first attempt but the reduction is not as intuitive as the reduction of the satisfiability
problem of ML( r©, k©). Moreover, in the proof of Theorem 4.1.1, we used three
relations Rs, Ru, and Rr: Rs for moving from the spy point to every other point in
the model, and Ru, Rr for moving up and right, respectively, from one tile to the
other. With memory logics, on the other hand, we will see that only one relation
R is enough. Besides, we will also see that the spy points defined for the infinite
models of Chapter 3 play a crucial role in the encoding of the satisfiability problem
ofML( r©, k©): we can reuse and adapt the work of our previous chapter.

For these reasons, we choose to present in this thesis the proofs of undecidability
via memory logics. We will provide reductions for each of our six logics. As usual,
we start with sabotage logic.

4.2 Sabotage Logic

4.2.1 Local Sabotage

We define a computable function τ : FORMML( r©, k©) → FORMML(〈sb〉) that reduces
the satisfiability problem ofML( r©, k©) to the satisfiability problem ofML(〈sb〉).
That is, for each formula ϕ satisfiable in some ML( r©, k©)-model we construct a
formula τ(ϕ) satisfiable in someML(〈sb〉)-model such that:

ϕ is satisfiable if and only if τ(ϕ) is satisfiable. (4.1)

The undecidability of the satisfiability problem of ML(〈sb〉) will follow from the
undecidability of the satisfiability problem ofML( r©, k©).

The construction of τ proceeds in two steps. First, we translate memory logic
models to standard Kripke models. We enforce some constraints on the structure of
our translated models with a formula Struct that enlarges the originalML( r©, k©)-
model with a spy point: we enforce arrows departing from and returning to the spy
point as we did for the infinite models of Section 3.2.1. And finally, in order for a
Kripke model to simulate a memory, we provide a translation Tr fromML( r©, k©)-
formulas toML(〈sb〉)-formulas that simulates the r© and k© operators: storing a
point in the memory is simulated by deleting some of the arrows we have enforced in
the spy point, and checking whether the current point of evaluation is in the memory
is simulated by checking if an arrow has been deleted or not.

Definition 4.2.1. Let ϕ be an ML( r©, k©)-formula that does not contain the
propositional symbol s. We define τ(ϕ) = Struct ∧ Tr(ϕ).

The effect of τ(ϕ) for some ϕ is illustrated below:

ϕ . . . τ(ϕ)
ϕ . . .

s

If we succeed in constructing such a function τ , it follows that the satisfiability
problem ofML(〈sb〉) is undecidable. Why? Well, suppose it were decidable. Then
we could solve the satisfiability problem of ML( r©, k©) as follows: given ϕ, we
build τ(ϕ) and use the decision procedure ofML(〈sb〉) to decide whether τ(ϕ) is
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satisfiable. By (4.1) this would solve the satisfiability problem ofML( r©, k©), which
is impossible given that it is known to be undecidable.

Let us now see how we can define Struct and Tr(ϕ) to make the reduction.

Definition 4.2.2. Let M = 〈W,R, V,M〉 be an ML( r©, k©)-model in which ϕ is
satisfied. We define Struct as the conjunction of several properties:

Struct = s ∧�¬s ∧�♦s (1′)
∧ ��(s→ �¬s) (2′)
∧ [sb][sb](s→ �♦s) (3′)
∧ �[sb](s→ ♦¬♦s) (4′)
∧ ��(¬s→ ♦(s ∧ ¬♦s)) (5′)
∧ �[sb](¬s→ [sb](s→ ��(¬s→ ♦s))) (6′)
∧ ��(¬s→ [sb](s→ ♦♦(¬s ∧ ¬♦s))) (7′)
∧ ��(¬s→ [sb](s→ ♦¬♦s)) (8′)

Struct defines the structure of our translated models by enlarging the original
model with a spy point. Note that formulas (1′) to (8′) are analogous to formulas
of the infinite models of Section 3.2.1; the main difference is that we don’t need to
enforce a non-empty set of points (♦>) in (1′), and in a similar way we don’t need to
enforce seriality, irreflexivity, and transitivity. By dropping these properties, the rest
of the formulas remain the same: formulas (2′), (3′), and (4′) enforce arrows back to
the evaluation point in one step, while formulas (5′), (6′), and (7′) do the same but
in two steps. (8′) ensures that the evaluation point is linked to every point of the
model except to itself, i.e., makes the evaluation point a “spy point.”

The next proposition spells out the shape of the models we want to enforce.

Proposition 4.2.3. LetM = 〈W,R, V 〉 be a model without a memory and w ∈W .
IfM, w |= Struct, then the following properties hold:

1. w is the only state of the model that satisfies the propositional symbol s, in the
connected component generated by w.

2. For all states v ∈ W such that v 6= w, if (w, v) ∈ R then (v, w) ∈ R, and
w is a spy point, i.e., if (w, v) ∈ R∗ then (w, v) ∈ R – where R∗ denotes the
reflexive-transitive closure of R.

Proposition 4.2.3 enumerates the main properties of the spy point: it is the
only point in the connected component satisfying s, and each time that there is an
outgoing edge to some state of the model, there is also an edge coming back.

Now we introduce the translation ofML( r©, k©)-formulas toML(〈sb〉)-formulas.

Definition 4.2.4. Given ϕ, we define Tr(ϕ) = ♦(ϕ)′, where ( )′ is defined as:

(⊥)′ = ⊥
(p)′ = p for p ∈ PROP appearing in ϕ
( k©)′ = ¬♦s
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′
(♦ψ)′ = ♦(¬s ∧ (ψ)′)
( r©ψ)′ = (♦s→ 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (ψ)′))) ∧ (¬♦s→ (ψ)′)

Tr(ϕ) places the translation ( )′ of the memory logic formula ϕ right after the
evaluation point. As you can see, ( )′ is defined inductively on the structure of the
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formulas. Boolean cases are obvious. For the diamond case, ♦ψ is satisfied if there
is a successor v where ψ holds, but we must ensure that v is a point of the original
ML( r©, k©)-model and not the spy point, so v cannot satisfy s. r© is represented by
removing the edge from the state we want to memorize to the spy point, and from
the spy point to the “memorized” state. Observe how the translation behaves: if
the point has already been memorized (¬♦s), then nothing needs to be done and
the translation continues; otherwise (♦s), we make the spy point inaccessible using
〈sb〉, and we also delete the arrow from the spy point to point that cannot access it.
k© is represented by checking whether there is an edge pointing to the spy point: if
such an edge does not exist it means that the current point of evaluation is in the
memory.

Theorem 4.2.5. Let ϕ be a formula ofML( r©, k©) that does not contain the propo-
sitional symbol s. Then, ϕ is satisfiable if and only if τ(ϕ) is satisfiable.

Proof. (ϕ is sat ⇐ τ (ϕ) is sat) Suppose that τ(ϕ) is satisfiable, i.e., that there
exists a model M = 〈W,R, V 〉 and s ∈ W such that 〈W,R, V 〉, s |= Struct and
〈W,R, V 〉, s |= Tr(ϕ). We want to show that ϕ is satisfiable, i.e., that there is
a model M′ = 〈W ′, R′, V ′, ∅〉 and w′ ∈ W ′ such that 〈W ′, R′, V ′, ∅〉, w′ |= ϕ. As
〈W,R, V 〉, s |= Struct we can defineM′ = 〈W ′, R′, V ′, ∅〉, where

W ′ = {v′ | (s, v′) ∈ R}
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′ for p ∈ PROP

ThusM′ is extracted from the translated modelM, and because 〈W,R, V 〉, s |=
Tr(ϕ), there is w′ ∈W ′ such that (s, w′) ∈ R and 〈W,R, V 〉, w′ |= (ϕ)′.

We can see that the memory inM′ is initially empty, but as soon as we start
remembering elements we need to delete pairs of arrows to simulate storing those
elements in the memory, so we need to keep track of the changes in the accessibility
relation. We will prove:

〈W ′, R′, V ′,M ′〉, v′ |= ψ iff 〈W,RM ′ , V 〉, v′ |= (ψ)′ (4.2)

where v′ ∈W ′, M ′ ⊆W ′, ψ ∈ FORM, and RM ′ = R\{(m′, s), (s,m′) | m′ ∈M ′}. In
particular, whenM ′ = ∅ we have that 〈W ′, R′, V ′, ∅〉, w′ |= ϕ iff 〈W,R, V 〉, w′ |= (ϕ)′.

We now prove (4.2) by structural induction on ψ, or more precisely, by structural
induction on the number of connectives in ψ.

First suppose that ψ contains no connectives. Then ψ could be ⊥, a propositional
symbol p, or the unary predicate k©. For the purposes of the inductive proofs we
regard ⊥ as a propositional symbol rather than as a logical connective (but observe
that ⊥ is trivially false at v′ in both models, so we have the desired equivalence).
Hence, we have two base cases:

ψ = p: Suppose that 〈W ′, R′, V ′,M ′〉, v′ |= p. By the semantics we have v′ ∈ V ′(p),
and this is equivalent to v′ ∈ V (p)∩W ′ by definition of V ′. Because v′ ∈ V (p),
by the semantics we have 〈W,RM ′ , V 〉, v′ |= p, and by definition of ( )′ this is
equivalent to 〈W,RM ′ , V 〉, v′ |= (p)′.

ψ = k©: Suppose that 〈W ′, R′, V ′,M ′〉, v′ |= k©. By the semantics we have v′ ∈M ′,
then by definition of RM ′ and Proposition 4.2.3 we have {(v′, s), (s, v′)} 6⊆ RM ′
and 〈W,RM ′ , V 〉, v′ |= ¬♦s. Then by definition of ( )′ this is equivalent to
〈W,RM ′ , V 〉, v′ |= ( k©)′.
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Now for the inductive case. The induction hypothesis is that the desired equiva-
lence holds for all formulas containing at most n connectives (where n ≥ 0):

〈W ′, R′, V ′,M ′〉, v′ |= φ iff 〈W,RM ′ , V 〉, v′ |= (φ)′

〈W ′, R′, V ′,M ′〉, v′ |= χ iff 〈W,RM ′ , V 〉, v′ |= (χ)′
(I.H)

We must now show that the equivalence holds for all formulas ψ containing n+ 1
connectives. Then ψ could be either ¬φ, φ ∧ χ, ♦φ, or r©φ. Hence, we have the
following inductive cases:

ψ = ¬φ: Suppose that 〈W ′, R′, V ′,M ′〉, v′ |= ¬φ. By the semantics we have
〈W ′, R′, V ′,M ′〉, v′ 6|= φ. By induction hypothesis we have 〈W,RM ′ , V 〉, v′ 6|=
(φ)′, but this is the case if and only if 〈W,RM ′ , V 〉, v′ |= ¬(φ)′. Then, by
definition of ( )′ this is equivalent to 〈W,RM ′ , V 〉, v′ |= (¬φ)′.

ψ = φ ∧ χ: Suppose that 〈W ′, R′, V ′,M ′〉, v′ |= φ ∧ χ. By the semantics we have
〈W ′, R′, V ′,M ′〉, v′ |= φ and 〈W ′, R′, V ′,M〉, v′ |= χ. By induction hypothesis
we have 〈W,RM ′ , V 〉, v′ |= (φ)′ and 〈W,RM ′ , V 〉, v′ |= (χ)′. Then by the
semantics we have 〈W,RM ′ , V 〉, v′ |= (φ)′ ∧ (χ)′, which by definition of ( )′ is
equivalent to 〈W,RM ′ , V 〉, v′ |= (φ ∧ χ)′.

ψ = ♦φ:
(⇐) Suppose that 〈W,RM ′ , V 〉, v′ |= (♦φ)′. By definition of ( )′ we have
〈W,RM ′ , V 〉, v′ |= ♦(¬s ∧ (φ)′). By the semantics there is u′ ∈ W such that
(v′, u′) ∈ RM ′ and 〈W,RM ′ , V 〉, u′ |= ¬s ∧ (φ)′. Then by the semantics we
have 〈W,RM ′ , V 〉, u′ |= ¬s and 〈W,RM ′ , V 〉, u′ |= (φ)′. By applying induction
hypothesis on the second conjunct we have 〈W ′, R′, V ′,M ′〉, u′ |= φ, hence by
the semantics we have 〈W ′, R′, V ′,M ′〉, v′ |= ♦φ.
(⇒) Suppose that 〈W ′, R′, V ′,M ′〉, v′ |= ♦φ. By the semantics there is u′ ∈
W ′ such that (v′, u′) ∈ R′ and 〈W ′, R′, V ′,M ′〉, u′ |= φ. Then by induction
hypothesis we have 〈W,RM ′ , V 〉, u′ |= (φ)′, and by Proposition 4.2.3 and the
semantics we have 〈W,RM ′ , V 〉, u′ |= ¬s∧ (φ)′. Hence by the semantics we have
〈W,RM ′ , V 〉, v′ |= ♦(¬s ∧ (φ)′), which is equivalent to 〈W,RM ′ , V 〉, v′ |= (♦φ)′
by definition of ( )′.

ψ = r©φ:
(⇐) Suppose that 〈W,RM ′ , V 〉, v′ |= ( r©φ)′. By definition of ( )′ and the
semantics we have the conjunction of the following formulas:

(1) 〈W,RM ′ , V 〉, v′ |= ♦s→ 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (φ)′))
(2) 〈W,RM ′ , V 〉, v′ |= ¬♦s→ (φ)′

We have to prove that 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We will prove it in two parts,
first assuming (1) and then assuming (2).
First, assume (1). Now suppose 〈W,RM ′ , V 〉, v′ |= ♦s, i.e, that (v′, s) ∈
RM ′ . Then we have that 〈W,RM ′ , V 〉, v′ |= 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (φ)′)). By the
semantics and because we assumed (v′, s) ∈ RM ′ we have 〈W, (RM ′)−v′s, V 〉, s |=
s∧〈sb〉(¬♦s∧(φ)′). It is easy to see that 〈W, (RM ′)−v′s, V 〉, s |= s, so let us check
〈W, (RM ′)−v′s, V 〉, s |= 〈sb〉(¬♦s ∧ (φ)′). By the semantics and because (s, v′) ∈
(RM ′)−v′s by Proposition 4.2.3, we have 〈W, (RM ′)−v′s,sv′ , V 〉, v′ |= ¬♦s∧(φ)′. The
first conjunct is trivial because (v′, s) /∈ (RM ′)−v′s,sv′ and by Proposition 4.2.3,
so by applying induction hypothesis on the second conjunct, and because we
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know v′ ∈ M ′ by definition of RM ′ , we have 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ.
Hence by the semantics we have 〈W ′, R′, V ′,M ′〉, v′ |= r©φ.
Finally, assume (2). Now suppose 〈W,RM ′ , V 〉, v′ |= ¬♦s, i.e, that (v′, s) /∈
RM ′ , which in turn also tell us that (s, v′) /∈ RM ′ , by definition of RM ′
and Proposition 4.2.3, and therefore v′ is in the memory. Then we have
that 〈W,RM ′ , V 〉, v′ |= (φ)′. By induction hypothesis and because we know
v′ ∈ M ′, we have that 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ, which is equivalent to
〈W ′, R′, V ′,M ′〉, v′ |= r©φ by the semantics.
(⇒) Suppose 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We have to prove 〈W,RM ′ , V 〉, v′ |=
( r©φ)′, i.e, we have to prove 〈W,RM ′ , V 〉, v′ |= ♦s→ 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (φ)′))
and 〈W,RM ′ , V 〉, v′ |= ¬♦s → (φ)′. It is easy to prove each part separately
(steps are similar to that of the (⇐) direction).

(ϕ is sat ⇒ τ (ϕ) is sat) Suppose that ϕ is satisfiable, i.e., that there exists a
modelM = 〈W,R, V, ∅〉 and w ∈W such that 〈W,R, V, ∅〉, w |= ϕ. We want to show
that τ(ϕ) is satisfiable, i.e., that there is a modelM′ = 〈W ′, R′, V ′〉 and s ∈W ′ such
that 〈W ′, R′, V ′〉, s |= Struct ∧ Tr(ϕ). Let s be a state that does not belong to W .
Then we can define the modelM′ = 〈W ′, R′, V ′〉 as follows:

W ′ = W ∪ {s}
R′ = R ∪ {(s, w), (w, s) | w ∈W}
V ′(p) = V (p) for p ∈ PROP appearing in ϕ
V ′(s) = {s}

By construction ofM′ it is easy to check that 〈W ′, R′, V ′〉, s |= Struct, so it only
remains to see that 〈W ′, R′, V ′〉, s |= Tr(ϕ). We can verify that

〈W,R, V,M〉, w |= ϕ iff 〈W ′, R′M , V ′〉, s |= Tr(ϕ) (4.3)

where R′M = R′\{(m, s), (s,m) | m ∈M}.
We prove (4.3) by structural induction. The base cases, p and k©, are trivial; the

Boolean cases, ¬φ and φ ∧ χ, follow by induction hypothesis; and the modal case,
♦φ, is easy to prove. As for the r©φ case, note that if 〈W,R, V,M〉, w |= r©φ, we
can delete the edges (s, w) and (w, s) to simulate the storing of w in the memory (if
those pairs are not in R′ means that w ∈M) and continue by evaluating the rest of
the translation ( )′.

From the previous theorem, we immediately get:

Theorem 4.2.6. The satisfiability problem ofML(〈sb〉) is undecidable.

4.2.2 Global Sabotage

Recall that in Table 2.1 of Chapter 2 we pointed out that the satisfiability problem
of the global version of sabotage logic is known to be undecidable. In [LR03a] there
is a proof that (multimodal) global sabotage logic is undecidable via a reduction of
the Post Correspondence Problem. Here we present an undecidability proof, with
a single relation, via a reduction of the satisfiability problem of ML( r©, k©). We
define a computable function τ : FORMML( r©, k©) → FORMML(〈gsb〉) that reduces
the satisfiability problem ofML( r©, k©) to the satisfiability problem ofML(〈gsb〉).

As before, the construction of τ proceeds in two steps. First, we define a formula
Struct that enlarges the original ML( r©, k©)-model with a spy point: for each
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successor we enforce a unique edge to an s-state, as we did for the infinite models of
Section 3.2.2, that will help us to identify a memorized point. And we also provide
a translation Tr fromML( r©, k©)-formulas toML(〈gsb〉)-formulas that simulates
the r© and k© operators: storing a point in the memory is simulated by deleting the
access to the s-successor of the point we want to memorize, and checking whether
the current point of evaluation is in the memory is simulated by checking if the arrow
of its s-successor has been deleted or not.

Definition 4.2.7. Let ϕ be an ML( r©, k©)-formula that does not contain the
propositional symbol s. We define τ(ϕ) = Struct ∧ Tr(ϕ).

A model of τ(ϕ) for some ϕ is illustrated below:

ϕ . . .

s

s s

s

In this picture, the black points and thick lines represent the model of the initial
memory logic formula that can be extracted from the whole model.

Let us now see how we can define Struct and Tr(ϕ) to make the reduction.

Definition 4.2.8. Let M = 〈W,R, V,M〉 be an ML( r©, k©)-model in which ϕ is
satisfied. We define Struct as the conjunction of several properties:

Struct = s ∧�¬s (1′)
∧ �(♦s ∧ 〈gsb〉¬♦s) (2′)
∧ ��(¬s→ ♦s ∧ 〈gsb〉¬♦s) (3′)
∧ [gsb](♦(♦s ∧ ♦(¬s ∧ ¬♦s))→ ♦¬♦s) (4′)

Struct defines the structure of our translated models by enlarging the original
model with a spy point and particular edges pointing to an s-point. Note that
formulas (1′) to (4′) are analogous to formulas of the infinite models of Section 3.2.2;
the main difference is that we don’t need to enforce a non-empty set of points (♦>)
in (1′), and in a similar way we don’t need to enforce seriality, irreflexivity, and
transitivity. By dropping these properties, the rest of the formulas remain the same:
the formula (2′) establishes that in one step, there is an s-successor that is unique,
and (3′) does the same but in two steps. (4′) ensures that the evaluation point is
linked to every point of the model except to itself and other points where s might
hold, i.e., makes the evaluation point a “spy point.”

The next proposition spells out the shape of the models we want to enforce.

Proposition 4.2.9. LetM = 〈W,R, V 〉 be a model without a memory and w ∈W .
IfM, w |= Struct, then the following properties hold:

1. w ∈ V (s) and for all state v ∈W such that v 6= w, if (w, v) ∈ R then there is
a unique pair (v, u) ∈ R, for some u ∈W , such that u ∈ V (s).

2. For all states v ∈ W such that v 6= w, we have that if (w, v) ∈ R∗ then
(w, v) ∈ R (w is a spy point).
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Proposition 4.2.9 enumerates the main properties of the spy point: it satisfies the
propositional symbol s, and each successor has a unique edge to a point in which s
is true – it might be w or another point, it doesn’t matter which one it is.

Now we introduce the translation ofML( r©, k©)-formulas toML(〈gsb〉)-formulas.

Definition 4.2.10. Given ϕ, we define Tr(ϕ) = ♦(ϕ)′, where ( )′ is defined as:

(⊥)′ = ⊥
(p)′ = p for p ∈ PROP appearing in ϕ
( k©)′ = ¬♦s
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′
(♦ψ)′ = ♦(¬s ∧ (ψ)′)
( r©ψ)′ = (♦s→ 〈gsb〉(¬♦s ∧ (ψ)′)) ∧ (¬♦s→ (ψ)′)

Tr(ϕ) is similar to the translation of the local version of sabotage, the only
difference lies in the remember operator. r© is represented by removing the edge
from the point we want to memorize to its s-successor: if it has no edge pointing
to an s-state (¬♦s), it means that it has already been memorized; otherwise (♦s),
we use 〈gsb〉 to make inaccessible the s-successor of the current point of evaluation
and proceed with the translation. k© is represented by checking whether the current
point of evaluation has an edge to its s-successor.

Theorem 4.2.11. Let ϕ be a formula of ML( r©, k©) that does not contain the
propositional symbol s. Then, ϕ is satisfiable if and only if τ(ϕ) is satisfiable.

Proof. (ϕ is sat ⇐ τ (ϕ) is sat) Suppose that τ(ϕ) is satisfiable, i.e., that there
exists a model M = 〈W,R, V 〉 and s ∈ W such that 〈W,R, V 〉, s |= Struct and
〈W,R, V 〉, s |= Tr(ϕ). We defineM′ = 〈W ′, R′, V ′, ∅〉, where

W ′ = {v′ | (s, v′) ∈ R}
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′ for p ∈ PROP

ThusM′ is extracted from the translated modelM, and because 〈W,R, V 〉, s |=
Tr(ϕ), there is w′ ∈ W ′ such that (s, w′) ∈ R and 〈W,R, V 〉, w′ |= (ϕ)′. We will
prove:

〈W ′, R′, V ′,M ′〉, v′ |= ψ iff 〈W,RM ′ , V 〉, v′ |= (ψ)′ (4.4)

where RM ′ = R\{(m′, u) | m′ ∈ M ′ ∧ u ∈ V (s)}. In particular, when M ′ = ∅ we
have that 〈W ′, R′, V ′, ∅〉, w′ |= ϕ iff 〈W,R, V 〉, w′ |= (ϕ)′.

We now prove (4.4) by structural induction on ψ. The base cases ψ = p and
ψ = k© are analogous to the local version of sabotage, and it is also the same for the
inductive cases ψ = ¬φ, ψ = φ ∧ χ, and ψ = ♦φ. Let us prove the interesting case:

ψ = r©φ:
(⇐) Suppose that 〈W,RM ′ , V 〉, v′ |= ( r©φ)′. By definition of ( )′ and the
semantics we have the conjunction of the following formulas:

(1) 〈W,RM ′ , V 〉, v′ |= ♦s→ 〈gsb〉(¬♦s ∧ (φ)′)
(2) 〈W,RM ′ , V 〉, v′ |= ¬♦s→ (φ)′

We have to prove that 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We will prove it in two parts,
first assuming (1) and then assuming (2).
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First, assume (1). Now suppose 〈W,RM ′ , V 〉, v′ |= ♦s, i.e, that (v′, u) ∈ RM ′ for
some u ∈ V (s). Then we have that 〈W,RM ′ , V 〉, v′ |= 〈gsb〉(¬♦s∧ (φ)′). By the
semantics and our last assumption we have 〈W, (RM ′)−v′u, V 〉, v′ |= ¬♦s ∧ (φ)′.
The first conjunct is trivial because (v′, u) /∈ (RM ′)−v′u and by Proposition 4.2.9,
so by applying induction hypothesis on the second conjunct, and because we
know v′ ∈ M ′ by definition of RM ′ , we have 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ.
Hence by the semantics we have 〈W ′, R′, V ′,M ′〉, v′ |= r©φ.
Finally, assume (2). Now suppose 〈W,RM ′ , V 〉, v′ |= ¬♦s, i.e, that (v′, u) /∈ RM ′
for some u ∈ V (s), which tell us that v′ is in the memory, by definition of RM ′
and Proposition 4.2.9. Then we have that 〈W,RM ′ , V 〉, v′ |= (φ)′. By induction
hypothesis and because we know v′ ∈M ′, we have 〈W ′, R′, V ′,M ′ ∪{v′}〉, v′ |=
φ, which is equivalent to 〈W ′, R′, V ′,M ′〉, v′ |= r©φ by the semantics.
(⇒) Suppose 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We have to prove 〈W,RM ′ , V 〉, v′ |=
( r©φ)′, i.e, we have to prove 〈W,RM ′ , V 〉, v′ |= ♦s → 〈gsb〉(¬♦s ∧ (φ)′) and
〈W,RM ′ , V 〉, v′ |= ¬♦s→ (φ)′. It is easy to prove each part separately (steps
are similar to that of the (⇐) direction).

(ϕ is sat ⇒ τ (ϕ) is sat) Suppose that ϕ is satisfiable, i.e., that there exists a
modelM = 〈W,R, V, ∅〉 and w ∈W such that 〈W,R, V, ∅〉, w |= ϕ. Let s be a state
that does not belong to W . Then we can defineM′ = 〈W ′, R′, V ′〉 as follows:

W ′ = W ∪ {s}
R′ = R ∪ {(s, w), (w, s) | w ∈W}
V ′(p) = V (p) for p ∈ PROP appearing in ϕ
V ′(s) = {s}

By construction ofM′ it is easy to check that 〈W ′, R′, V ′〉, s |= Struct, so it only
remains to see that 〈W ′, R′, V ′〉, s |= Tr(ϕ). We can verify that

〈W,R, V,M〉, w |= ϕ iff 〈W ′, R′M , V ′〉, s |= Tr(ϕ) (4.5)

where R′M = R′\{(m, s) | m ∈M}.
We prove (4.5) by structural induction. The base cases, p and k©, are trivial; the

Boolean cases, ¬φ and φ ∧ χ, follow by induction hypothesis; and the modal case,
♦φ, is easy to prove. As for the r©φ case, note that if 〈W,R, V,M〉, w |= r©φ, we
can delete the edge (w, s) to simulate the storing of w in the memory (if this pair is
not in R′ means that w ∈M) and continue by evaluating the rest of the translation
( )′.

From the previous theorem, we immediately get:

Theorem 4.2.12. The satisfiability problem ofML(〈gsb〉) is undecidable.

4.3 Bridge Logic

4.3.1 Local Bridge

We define a computable function τ : FORMML( r©, k©) → FORMML(〈br〉) that reduces
the satisfiability problem ofML( r©, k©) to the satisfiability problem ofML(〈br〉).

As usual, the construction of τ proceeds in two steps. First, we enforce some
constraints on the structure of our translated models with a formula Struct that
enlarges the originalML( r©, k©)-model with two sets of points: a set of points in
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which the propositional symbol s is true, and a set of points in which the propositional
symbol b is true. As for the s-set, it is analogous to the one of the infinite models of
Section 3.3.1, i.e., the points are all connected among them (one of them being the
spy point) and disconnected with the points of theML( r©, k©)-model. As for the
b-set, it has the same properties as the s-set except that b is true instead of s. In this
second set one point is used as a “bridge” to connect the spy point with the point of
the ML( r©, k©)-model in which the formula we want to translate is satisfied (the
need for the b-set will become clear later when we present the definition of τ(ϕ)). And
we also provide a translation Tr from ML( r©, k©)-formulas to ML(〈br〉)-formulas
that simulates the r© and k© operators: storing a point in the memory is simulated
by adding edges back and forth from the state we want to memorize to the spy point,
and checking whether the current point of evaluation is in the memory is simulated
by checking if an edge to the spy point exists.

Definition 4.3.1. Let ϕ be an ML( r©, k©)-formula that does not contain the
propositional symbols s and b. We define τ(ϕ) = Struct ∧ Tr(ϕ).

A model of τ(ϕ) for some ϕ is illustrated below:

ϕ . . .

s s

b b

In this picture, the black points and thick lines represent the model of the initial
memory logic formula that can be extracted from the whole model; the dotted lines
represent the edges created with 〈br〉.

Let us now see how we can define Struct and Tr(ϕ) to make the reduction.

Definition 4.3.2. Let M = 〈W,R, V,M〉 be an ML( r©, k©)-model in which ϕ is
satisfied. We define Struct as the conjunction of several properties:

Struct = s ∧ [br]¬s (1′)
∧ �[br]¬s (2′)
∧ ��s (3′)
∧ �[br]�¬s (4′)
∧ �¬b (5′)
∧ 〈br〉(b ∧ [br]¬b (6′)

∧ �[br]¬b
∧ ��b
∧ �[br]�¬b
∧ �¬s)

Struct defines the structure of our translated models by enlarging the original
model with two sets of points: a set of “spy points” in which s is true, and a set
of “bridge points” in which b is true. Note that formulas (1′) to (4′) are analogous
to formulas of the infinite models of Section 3.3.1; the main difference is that we
don’t need to enforce a non-empty set of points (〈br〉>) in (1′), and in a similar
way we don’t need to enforce seriality, irreflexivity, and transitivity. By dropping
these properties, formulas (1′)-(4′) remain the same: the formula (1′) establishes that
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the evaluation point cannot access the points of theML( r©, k©)-model (and that it
satisfies s and that it is reflexive); (2′) ensures that there is no unconnected s-state;
(3′) ensures that all successors have only s-successors; and (4′) ensures that there no
edges from ¬s-states into the connected component satisfying s. We added (5′) to
ensure that no successor of an element of the s-set satisfies the new propositional
symbol b. And we also added (6′) which establishes that there is a totally connected
component of states satisfying b that is unreachable from the s-component. This set
of b-states is described exactly as for the set of s-states: observe that in (6′), what
is in the scope of the 〈br〉 operator is the conjunction of formulas (1′) to (5′), but
replacing b for s and vice versa.

The next proposition spells out the shape of the models we want to enforce.

Proposition 4.3.3. LetM = 〈W,R, V 〉 be a model without a memory and w ∈W .
IfM, w |= Struct, then the following properties hold:

1. w ∈ V (s) and V (s) is totally connected (for all v, u ∈ V (s), we have (v, u) ∈ R
and (u, v) ∈ R).

2. If w ∈ V (s) and v /∈ V (s) then (w, v) /∈ R and (v, w) /∈ R.

3. w /∈ V (b) and V (b) is totally connected (for all v, u ∈ V (b), we have (v, u) ∈ R
and (u, v) ∈ R).

4. If w /∈ V (b) and v ∈ V (b) then (w, v) /∈ R and (v, w) /∈ R.

Proposition 4.3.3 enumerates the main properties of the spy point and the two
sets we define: the spy point satisfies s but does not satisfies b, and both the s-set
and the b-set are totally connected, with the members of one set being disconnected
from the members of the other set.

Now we introduce the translation ofML( r©, k©)-formulas toML(〈br〉)-formulas.

Definition 4.3.4. Given ϕ, we define Tr(ϕ) = 〈br〉(b∧ 〈br〉(¬s∧ (ϕ)′)), where ( )′ is
defined as:

(⊥)′ = ⊥
(p)′ = p for p ∈ PROP appearing in ϕ
( k©)′ = ♦s
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′
(♦ψ)′ = ♦(¬s ∧ ¬b ∧ (ψ)′)
( r©ψ)′ = (¬♦s→ 〈br〉(s ∧ ♦b ∧ 〈br〉(♦s ∧ (ψ)′))) ∧ (♦s→ (ψ)′)

Tr(ϕ) places the translation ( )′ of the memory logic formula ϕ in an inaccessible
ML( r©, k©)-state. Note that it does not create an edge from the spy point to the
point of theML( r©, k©)-model directly. Instead, it creates an edge to an inaccessible
b-state (which acts as a “bridge” between the spy point and theML( r©, k©)-model),
and from there, creates another edge to the point of the ML( r©, k©)-model that
satisfies ϕ. Then, we evaluate the translation ( )′ on ϕ. Boolean and modal cases are
obvious. r© is represented by creating arrows from the state we want to memorize
to the spy point, and from the spy point to the memorized state. Note how the
translation behaves: if the point has already been memorized (♦s), then nothing
needs to be done and the translation continues; otherwise (¬♦s), we make one point
of the s-component accessible using 〈br〉, and this particular s-point must be the one
that has a b-successor. (Thus, even tough we might have several points satisfying s in
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the connected component, we use only one of them as the spy point.) And then, from
the spy point, we create an arrow to theML( r©, k©)-state we want to memorize. k©
is represented by checking whether there is an edge pointing to the spy point: if such
an edge does exist it means that the current point of evaluation is in the memory.

Theorem 4.3.5. Let ϕ be a formula ofML( r©, k©) that does not contain the propo-
sitional symbols s and b. Then, ϕ is satisfiable if and only if τ(ϕ) is satisfiable.

Proof. (ϕ is sat ⇐ τ (ϕ) is sat) Suppose that τ(ϕ) is satisfiable, i.e., that there
exists a model M = 〈W,R, V 〉 and s ∈ W such that 〈W,R, V 〉, s |= Struct and
〈W,R, V 〉, s |= Tr(ϕ). We defineM′ = 〈W ′, R′, V ′, ∅〉, where

W ′ = W\(V (s) ∪ V (b))
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′ for p ∈ PROP

ThusM′ is extracted from the translated modelM, and because 〈W,R, V 〉, s |=
Tr(ϕ), there are b, w′ ∈ W such that b ∈ V (b), w′ /∈ V (s), {(s, b), (b, w′)} ⊆ R, and
〈W,R, V 〉, w′ |= (ϕ)′. We will prove:

〈W ′, R′, V ′,M ′〉, v′ |= ψ iff 〈W,RM ′ , V 〉, v′ |= (ψ)′ (4.6)

where RM ′ = R ∪ {(m′, s), (s,m′) | m′ ∈M ′}. In particular, when M ′ = ∅ we have
that 〈W ′, R′, V ′, ∅〉, w′ |= ϕ iff 〈W,R, V 〉, w′ |= (ϕ)′.

We now prove (4.6) by structural induction on ψ. Boolean and modal cases are
easy, and it is also the case for k©. Let us prove the interesting case:

ψ = r©φ:
(⇐) Suppose that 〈W,RM ′ , V 〉, v′ |= ( r©φ)′. By definition of ( )′ and the
semantics we have the conjunction of the following formulas:

(1) 〈W,RM ′ , V 〉, v′ |= ¬♦s→ 〈br〉(s ∧ ♦b ∧ 〈br〉(♦s ∧ (φ)′))
(2) 〈W,RM ′ , V 〉, v′ |= ♦s→ (φ)′

We have to prove that 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We will prove it in two parts,
first assuming (1) and then assuming (2).
First, assume (1). Now suppose 〈W,RM ′ , V 〉, v′ |= ¬♦s, i.e, that (v′, u) /∈ RM ′
for some u ∈ V (s). Then we have that 〈W,RM ′ , V 〉, v′ |= 〈br〉(s∧♦b∧〈br〉(♦s∧
(φ)′)). By the semantics and our last assumption we have 〈W, (RM ′)+

v′s, V 〉, s |=
s ∧ ♦b ∧ 〈br〉(♦s ∧ (φ)′). It is easy to see that 〈W, (RM ′)+

v′s, V 〉, s |= s, so let us
check 〈W, (RM ′)+

v′s, V 〉, s |= ♦b∧〈br〉(♦s∧ (φ)′). Then 〈W, (RM ′)+
v′s, V 〉, s |= ♦b

because by definition of Tr the evaluation started at s by adding and edge to a
b-state (that does not satisfy s by Proposition 4.3.3). It remains to see that
〈W, (RM ′)+

v′s, V 〉, s |= 〈br〉(♦s ∧ (φ)′). By the semantics and because (s, v′) /∈
(RM ′)+

v′s by Proposition 4.3.3, we have 〈W, (RM ′)+
v′s,sv′ , V 〉, v′ |= ♦s∧ (φ)′. The

first conjunct is trivial by Proposition 4.3.3 and because (v′, s) ∈ (RM ′)+
v′s,sv′ ,

so by applying induction hypothesis on the second conjunct, and because we
know v′ ∈ M ′ by definition of RM ′ , we have 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ.
Hence by the semantics we have 〈W ′, R′, V ′,M ′〉, v′ |= r©φ.
Finally, assume (2). Now suppose 〈W,RM ′ , V 〉, v′ |= ♦s, i.e, that (v′, s) ∈
RM ′ , which in turn also tell us that (s, v′) ∈ RM ′ , by definition of RM ′ and
Proposition 4.3.3. Then we have that 〈W,RM ′ , V 〉, v′ |= (φ)′. By induction
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hypothesis and because we know v′ ∈M ′, we have 〈W ′, R′, V ′,M ′ ∪{v′}〉, v′ |=
φ, which is equivalent to 〈W ′, R′, V ′,M ′〉, v′ |= r©φ by the semantics.
(⇒) Suppose 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We have to prove 〈W,RM ′ , V 〉, v′ |=
( r©φ)′, i.e, we have to prove 〈W,RM ′ , V 〉, v′ |= ¬♦s→ 〈br〉(s∧♦b∧〈br〉(♦s∧(φ)′))
and 〈W,RM ′ , V 〉, v′ |= ♦s→ (φ)′. It is easy to prove each part separately (steps
are similar to that of the (⇐) direction).

(ϕ is sat ⇒ τ (ϕ) is sat) Suppose that ϕ is satisfiable, i.e., that there exists a
modelM = 〈W,R, V, ∅〉 and w ∈ W such that 〈W,R, V, ∅〉, w |= ϕ. Let s and b be
states that do not belong to W . Then we can defineM′ = 〈W ′, R′, V ′〉 as follows:

W ′ = W ∪ {s, b}
R′ = R ∪ {(s, s), (b, b)}
V ′(p) = V (p) for p ∈ PROP appearing in ϕ
V ′(s) = {s}
V ′(b) = {b}

By construction ofM′ it is easy to check that 〈W ′, R′, V ′〉, s |= Struct, so it only
remains to see that 〈W ′, R′, V ′〉, s |= Tr(ϕ). We can verify that

〈W,R, V,M〉, w |= ϕ iff 〈W ′, R′M , V ′〉, s |= Tr(ϕ) (4.7)

where R′M = R′ ∪ {(m, s), (s,m) | m ∈M}.
We prove (4.7) by structural induction. The base cases, p and k©, are trivial; the

Boolean cases, ¬φ and φ ∧ χ, follow by induction hypothesis; and the modal case,
♦φ, is easy to prove. As for the r©φ case, note that if 〈W,R, V,M〉, w |= r©φ, we
can create the edges (w, s) and (s, w) to simulate the storing of w in the memory
(if those pairs are already in R′ means that w ∈M) and continue by evaluating the
rest of the translation ( )′.

From the previous theorem, we immediately get:

Theorem 4.3.6. The satisfiability problem ofML(〈br〉) is undecidable.

4.3.2 Global Bridge

We define a computable function τ : FORMML( r©, k©) → FORMML(〈gbr〉) that reduces
the satisfiability problem ofML( r©, k©) to the satisfiability problem ofML(〈gbr〉).

As usual, the construction of τ proceeds in two steps. First, we define a formula
Struct that enlarges the original ML( r©, k©)-model with a spy point: for each
successor we enforce the non-existence of s-successors as we did for the infinite
models of Section 3.3.2. And we also provide a translation Tr from ML( r©, k©)-
formulas toML(〈gbr〉)-formulas that simulates the r© and k© operators: storing a
point in the memory is simulated by creating an arrow to an s-state from the point
we want to memorize, and checking whether the current point of evaluation is in the
memory is simulated by checking if an arrow to an s-state has been created or not.

Definition 4.3.7. Let ϕ be an ML( r©, k©)-formula that does not contain the
propositional symbol s. We define τ(ϕ) = Struct ∧ Tr(ϕ).

A model of τ(ϕ) for some ϕ is illustrated in Figure 4.4. The black points and thick
lines represent the model of the initial memory logic formula that can be extracted
from the whole model.
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ϕ . . .

s

Figure 4.4: A model of τ(ϕ) for some ϕ.

Let us now see how we can define Struct and Tr(ϕ) to make the reduction.

Definition 4.3.8. Let M = 〈W,R, V,M〉 be an ML( r©, k©)-model in which ϕ is
satisfied. We define Struct as the conjunction of several properties:

Struct = s ∧�¬s (1′)
∧ ��¬s (2′)
∧ ��(¬s→ �¬s) (3′)
∧ [gbr](♦(¬♦s ∧ ♦♦s) → ♦♦s) (4′)

Struct defines the structure of our translated models by enlarging the original
model with a spy point. Note that formulas (1′) to (4′) are analogous to formulas
of the infinite models of Section 3.3.2; the main difference is that we don’t need to
enforce a non-empty set of points (♦>) in (1′), and in a similar way we don’t need
to enforce seriality, irreflexivity, and transitivity. By dropping these properties, the
rest of the formulas remain the same: the formula (2′) establishes that in one step,
there are no s-successors, and (3′) does the same but in two steps. (4′) ensures that
the evaluation point is linked to every point of the model except to itself, i.e., makes
the evaluation point a “spy point.”

The next proposition spells out the shape of the models we want to enforce.

Proposition 4.3.9. LetM = 〈W,R, V 〉 be a model without a memory and w ∈W .
IfM, w |= Struct, then the following properties hold:

1. w ∈ V (s) and for all state v ∈W such that v 6= w, if (w, v) ∈ R then there is
not any pair of the form (v, u) ∈ R, for some u ∈W , such that u ∈ V (s).

2. For all states v ∈ W such that v 6= w, we have that if (w, v) ∈ R∗ then
(w, v) ∈ R (w is a spy point).

Proposition 4.3.9 enumerates the main properties of the spy point: it satisfies the
propositional symbol s, and for each successor there are no edges to s-points.

Now we introduce the translation ofML( r©, k©)-formulas toML(〈gbr〉)-formulas.

Definition 4.3.10. Given ϕ, we define Tr(ϕ) = ♦(ϕ)′, where ( )′ is defined as:

(⊥)′ = ⊥
(p)′ = p for p ∈ PROP appearing in ϕ
( k©)′ = ♦s
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′
(♦ψ)′ = ♦(¬s ∧ (ψ)′)
( r©ψ)′ = (¬♦s→ 〈gbr〉(♦s ∧ (ψ)′)) ∧ (♦s→ (ψ)′)

Tr(ϕ) is similar to the translation of the global version of sabotage: we create
an edge to an s-state instead of delete it. r© is represented by creating an edge to
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an s-point from the state we want to memorize: if it has an s-successor (♦s), then
nothing needs to be done and the translation continues; otherwise (¬♦s), we add
an edge pointing to a state that satisfies s from the current point of evaluation and
proceed with the translation. k© is represented by checking whether the current point
of evaluation has an edge to an s-point.

Theorem 4.3.11. Let ϕ be a formula of ML( r©, k©) that does not contain the
propositional symbol s. Then, ϕ is satisfiable if and only if τ(ϕ) is satisfiable.

Proof. (ϕ is sat ⇐ τ (ϕ) is sat) Suppose that τ(ϕ) is satisfiable, i.e., that there
exists a model M = 〈W,R, V 〉 and s ∈ W such that 〈W,R, V 〉, s |= Struct and
〈W,R, V 〉, s |= Tr(ϕ). We defineM′ = 〈W ′, R′, V ′, ∅〉, where

W ′ = {v′ | (s, v′) ∈ R}
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′ for p ∈ PROP

ThusM′ is extracted from the translated modelM, and because 〈W,R, V 〉, s |=
Tr(ϕ), there is w′ ∈ W ′ such that (s, w′) ∈ R and 〈W,R, V 〉, w′ |= (ϕ)′. We will
prove:

〈W ′, R′, V ′,M ′〉, v′ |= ψ iff 〈W,RM ′ , V 〉, v′ |= (ψ)′ (4.8)

where RM ′ = R ∪ {(m′, u) | m′ ∈ M ′ ∧ u ∈ V (s)}. In particular, when M ′ = ∅ we
have that 〈W ′, R′, V ′, ∅〉, w′ |= ϕ iff 〈W,R, V 〉, w′ |= (ϕ)′.

We now prove (4.8) by structural induction on ψ. Boolean and modal cases are
easy, and it is also the case for k©. Let us prove the interesting case:

ψ = r©φ:
(⇐) Suppose that 〈W,RM ′ , V 〉, v′ |= ( r©φ)′. By definition of ( )′ and the
semantics we have the conjunction of the following formulas:

(1) 〈W,RM ′ , V 〉, v′ |= ¬♦s→ 〈gbr〉(♦s ∧ (φ)′)
(2) 〈W,RM ′ , V 〉, v′ |= ♦s→ (φ)′

We have to prove that 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We will prove it in two parts,
first assuming (1) and then assuming (2).
First, assume (1). Now suppose 〈W,RM ′ , V 〉, v′ |= ¬♦s, i.e, that (v′, u) /∈ RM ′
for some u ∈ V (s). Then we have that 〈W,RM ′ , V 〉, v′ |= 〈gbr〉(♦s ∧ (φ)′). By
the semantics and our last assumption we have 〈W, (RM ′)+

v′u, V 〉, v′ |= ♦s∧ (φ)′.
The first conjunct is trivial because (v′, u) ∈ (RM ′)+

v′u and by Proposition 4.3.9,
so by applying induction hypothesis on the second conjunct, and because we
know v′ ∈ M ′ by definition of RM ′ , we have 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ.
Hence by the semantics we have 〈W ′, R′, V ′,M ′〉, v′ |= r©φ.
Finally, assume (2). Now suppose 〈W,RM ′ , V 〉, v′ |= ♦s, i.e, that (v′, u) ∈ RM ′
for some u ∈ V (s), which tell us that v′ is in the memory, by definition of RM ′
and Proposition 4.3.9. Then we have that 〈W,RM ′ , V 〉, v′ |= (φ)′. By induction
hypothesis and because we know v′ ∈M ′, we have 〈W ′, R′, V ′,M ′ ∪{v′}〉, v′ |=
φ, which is equivalent to 〈W ′, R′, V ′,M ′〉, v′ |= r©φ by the semantics.
(⇒) Suppose 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We have to prove 〈W,RM ′ , V 〉, v′ |=
( r©φ)′, i.e, we have to prove 〈W,RM ′ , V 〉, v′ |= ¬♦s → 〈gbr〉(♦s ∧ (φ)′) and
〈W,RM ′ , V 〉, v′ |= ♦s → (φ)′. It is easy to prove each part separately (steps
are similar to that of the (⇐) direction).
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(ϕ is sat ⇒ τ (ϕ) is sat) Suppose that ϕ is satisfiable, i.e., that there exists a
modelM = 〈W,R, V, ∅〉 and w ∈W such that 〈W,R, V, ∅〉, w |= ϕ. Let s be a state
that does not belong to W . Then we can defineM′ = 〈W ′, R′, V ′〉 as follows:

W ′ = W ∪ {s}
R′ = R ∪ {(s, w) | w ∈W}
V ′(p) = V (p) for p ∈ PROP appearing in ϕ
V ′(s) = {s}

By construction ofM′ it is easy to check that 〈W ′, R′, V ′〉, s |= Struct, so it only
remains to see that 〈W ′, R′, V ′〉, s |= Tr(ϕ). We can verify that

〈W,R, V,M〉, w |= ϕ iff 〈W ′, R′M , V ′〉, s |= Tr(ϕ) (4.9)
where R′M = R′ ∪ {(m, s) | m ∈M}.

We prove (4.9) by structural induction. The base cases, p and k©, are trivial;
the Boolean cases, ¬φ and φ ∧ χ, follow by induction hypothesis; and the modal
case, ♦φ, is easy to prove. As for the r©φ case, note that if 〈W,R, V,M〉, w |= r©φ,
we can create the edge (w, s) to simulate the storing of w in the memory (if this
pair is already in R′ means that w ∈M) and continue by evaluating the rest of the
translation ( )′.

From the previous theorem, we immediately get:
Theorem 4.3.12. The satisfiability problem ofML(〈gbr〉) is undecidable.

4.4 Swap Logic

4.4.1 Local Swap

Recall that in Table 2.1 of Chapter 2 we pointed out that the satisfiability problem of
the local version of swap logic is known to be undecidable. In [AFH14] there is a proof
of undecidability for local swap logic via a reduction of the satisfiability problem of
ML( r©, k©). The proof we present here is an adaptation of the proof that appears in
that paper. We define a computable function τ : FORMML( r©, k©) → FORMML(〈sw〉)
that reduces the satisfiability problem ofML( r©, k©) to the satisfiability problem of
ML(〈sw〉).

As usual, the construction of τ proceeds in two steps. First, we define a formula
Struct that enlarges the original ML( r©, k©)-model with a spy point and with
“switches”: we enforce a spy point as we did for the infinite models of Section 3.4,
and additionally, for each point of the ML( r©, k©)-model we enforce “switches,”
i.e., special edges whose position (“off” by default, and “on” if the direction of the
edge has been swap around) will help us to identify a memorized point. And we
also provide a translation Tr fromML( r©, k©)-formulas toML(〈sw〉)-formulas that
simulates the r© and k© operators: storing a point in the memory is simulated by
swapping the switch of the point we want to memorize, and checking whether the
current point of evaluation is in the memory is simulated by checking the position of
the switch.
Definition 4.4.1. Let ϕ be an ML( r©, k©)-formula that does not contain the
propositional symbols s and sw. We define τ(ϕ) = Struct ∧ Tr(ϕ).

A model of τ(ϕ) for some ϕ is illustrated in Figure 4.5. The black points and thick
lines represent the model of the initial memory logic formula that can be extracted
from the whole model.
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Figure 4.5: A model of τ(ϕ) for some ϕ.

Let us now see how we can define Struct and Tr(ϕ) to make the reduction.

Definition 4.4.2. Let M = 〈W,R, V,M〉 be an ML( r©, k©)-model in which ϕ is
satisfied. We define Struct as the conjunction of several properties:

Struct = s ∧�(6)¬s (1′)
∧ ¬sw ∧�¬sw ∧�(♦(sw ∧�⊥) ∧ [sw](sw → �¬♦sw)) (2′)
∧ [sw][sw]����(sw → �⊥) (3′)
∧ [sw][sw](¬s ∧ ¬sw → 〈sw〉(sw ∧ ♦♦♦(s ∧ ♦¬♦sw)) (4′)

Struct defines the structure of our translated models by enlarging the original
model with a spy point and “switches.” The propositional symbol sw represents
“switch points” that will be used to encode memory operators. The formula (1′)
ensures that the propositional symbol s is true at the evaluation point and false at
any accessible point between 1 and 6 steps from there. (2′) initialises the switches,
represented by edges to states where sw is true. (3′) ensures that switch points can
be reached from the evaluation point by a unique path. Indeed, if this were not the
case, then it would be possible to swap around two edges leading to some switch
point, then come back to the evaluation point in two steps by this new path, and
come back to the same switch in two steps, where the formula (sw ∧ ¬�⊥) would
hold. (4′) ensures that the evaluation point is linked to every point of the model
except to itself and the switch points, i.e., makes the evaluation point a “spy point.”

The next proposition spells out the shape of the models we want to enforce.

Proposition 4.4.3. LetM = 〈W,R, V 〉 be a model without a memory and w ∈W .
IfM, w |= Struct, then the following properties hold:

1. w ∈ V (s) and for all state v ∈W such that v 6= w, if (w, v) ∈ R∗ then v /∈ V (s)
within 6 steps.

2. For all state v ∈W such that v 6= w, if (w, v) ∈ R then there is a unique edge
(v, u) ∈ R, for some u ∈W , such that u ∈ V (sw).

3. For all states v ∈ W such that v 6= w, if (w, v) ∈ R∗ then (w, v) ∈ R (w is a
spy point).

Proposition 4.4.3 enumerates the main properties of the spy point: it is the only
point that satisfies the propositional symbol s within 6 steps, and each successor has
a unique edge to a point in which the propositional symbol sw is true.

Now we introduce the translation ofML( r©, k©)-formulas toML(〈sw〉)-formulas.
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Definition 4.4.4. Given ϕ, we define Tr(ϕ) = ♦(ϕ)′, where ( )′ is defined as:

(⊥)′ = ⊥
(p)′ = p for p ∈ PROP appearing in ϕ
( k©)′ = ¬♦sw
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′
(♦ψ)′ = ♦(¬s ∧ ¬sw ∧ (ψ)′)
( r©ψ)′ = (♦sw → 〈sw〉(sw ∧ ♦(ψ)′)) ∧ (¬♦sw → (ψ)′)

Tr(ϕ) places the translation ( )′ of the memory logic formula ϕ right after the
evaluation point. Then, we evaluate the translation ( )′ on ϕ. Boolean cases are
obvious. For the diamond case, ♦ψ is satisfied if there is a successor v where ψ
holds, but we must ensure that v is a point of the originalML( r©, k©)-model, so v
cannot satisfy s nor sw. r© is represented by swapping the edge between the point
we want to memorize and its switch point. It is important that switch points do not
have successors and that they have exactly one predecessor. This ensures that the
path taken by ( r©ψ)′ correctly comes back to the same point of the model. k© is
represented by checking whether the current point has an edge to its switch point: if
such edge does not exist it means that it has already been swapped and that the
current point of evaluation is in the memory.

Theorem 4.4.5. Let ϕ be a formula ofML( r©, k©) that does not contain the propo-
sitional symbols s and sw. Then, ϕ is satisfiable if and only if τ(ϕ) is satisfiable.

Proof. (ϕ is sat ⇐ τ (ϕ) is sat) Suppose that τ(ϕ) is satisfiable, i.e., that there
exists a model M = 〈W,R, V 〉 and s ∈ W such that 〈W,R, V 〉, s |= Struct and
〈W,R, V 〉, s |= Tr(ϕ). We defineM′ = 〈W ′, R′, V ′, ∅〉, where

W ′ = {v′ | (s, v′) ∈ R}
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′ for p ∈ PROP

ThusM′ is extracted from the translated modelM, and because 〈W,R, V 〉, s |= Tr(ϕ),
there is w′ ∈W ′ such that (s, w′) ∈ R and 〈W,R, V 〉, w′ |= (ϕ)′. We will prove:

〈W ′, R′, V ′,M ′〉, v′ |= ψ iff 〈W,RM ′ , V 〉, v′ |= (ψ)′ (4.10)

where RM ′ = (R\S−1) ∪ S with S = {(v,m′) | m′ ∈M ′ ∧ v ∈ V (sw)}. In particular,
when M ′ = ∅ we have that 〈W ′, R′, V ′, ∅〉, w′ |= ϕ iff 〈W,R, V 〉, w′ |= (ϕ)′.

We now prove (4.10) by structural induction on ψ. Boolean and modal cases are
easy, and it is also the case for k©. Let us prove the interesting case:

ψ = r©φ:
(⇐) Suppose that 〈W,RM ′ , V 〉, v′ |= ( r©φ)′. By definition of ( )′ and the
semantics we have the conjunction of the following formulas:

(1) 〈W,RM ′ , V 〉, v′ |= ♦sw → 〈sw〉(sw ∧ ♦(φ)′)
(2) 〈W,RM ′ , V 〉, v′ |= ¬♦sw → (φ)′

We have to prove that 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We will prove it in two parts,
first assuming (1) and then assuming (2).
First, assume (1). Now suppose 〈W,RM ′ , V 〉, v′ |= ♦sw, i.e, that (v′, u) ∈ RM ′
for some u ∈ V (sw). Then we have that 〈W,RM ′ , V 〉, v′ |= 〈sw〉(sw∧♦(φ)′). By
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the semantics and our last assumption we have 〈W, (RM ′)∗uv′ , V 〉, u |= sw∧♦(φ)′.
The first conjunct is trivial because u ∈ V (sw) and by Proposition 4.4.3, so by
applying induction hypothesis on the second conjunct, and because we know
v′ ∈ M ′ by definition of RM ′ , we have 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ. Hence
by the semantics we have 〈W ′, R′, V ′,M ′〉, v′ |= r©φ.
Finally, assume (2). Now suppose 〈W,RM ′ , V 〉, v′ |= ¬♦sw, i.e, that (v′, u) /∈
RM ′ for some u ∈ V (sw), which in turn also tell us that (u, v′) ∈ RM ′ , by
definition of RM ′ and Proposition 4.4.3, and therefore v′ is in the memory. Then
we have that 〈W,RM ′ , V 〉, v′ |= (φ)′. By induction hypothesis and because we
know v′ ∈M ′, we have 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ, which is equivalent to
〈W ′, R′, V ′,M ′〉, v′ |= r©φ by the semantics.
(⇒) Suppose 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We have to prove 〈W,RM ′ , V 〉, v′ |=
( r©φ)′, i.e, we have to prove 〈W,RM ′ , V 〉, v′ |= ♦sw → 〈sw〉(sw ∧ ♦(φ)′) and
〈W,RM ′ , V 〉, v′ |= ¬♦sw → (φ)′. It is easy to prove each part separately (steps
are similar to that of the (⇐) direction).

(ϕ is sat ⇒ τ (ϕ) is sat) Suppose that ϕ is satisfiable, i.e., that there exists
a model M = 〈W,R, V, ∅〉 and w ∈ W such that 〈W,R, V, ∅〉, w |= ϕ. Let sw be a
bijective function between W and a set S such that S ∩W = ∅, and s a point that is
not a member of S ∪W . Then we can define the modelM′ = 〈W ′, R′, V ′〉 as follows:

W ′ = W ∪ {s} ∪ S
R′ = R ∪ {(s, w) | w ∈W} ∪ {(w, sw(w)) | w ∈W}
V ′(p) = V (p) for p ∈ PROP appearing in ϕ
V ′(s) = {s}
V ′(sw) = {sw(w) | w ∈W}.

By construction of M′ it is easy to check that 〈W ′, R′, V ′〉, s |= Struct, so it only
remains to see that 〈W ′, R′, V ′〉, s |= Tr(ϕ). We can verify that

〈W,R, V,M〉, w |= ϕ iff 〈W ′, R′M , V ′〉, s |= Tr(ϕ) (4.11)

where R′M = (R′\S−1) ∪ S with S = {(sw(m),m) | m ∈M}.
We prove (4.11) by structural induction. The base cases, p and k©, are trivial;

the Boolean cases, ¬φ and φ ∧ χ, follow by induction hypothesis; and the modal
case, ♦φ, is easy to prove. As for the r©φ case, note that if 〈W,R, V,M〉, w |= r©φ,
we can swap the edge (w, sw(w)) to simulate the storing of w in the memory (if
(w, sw(w)) /∈ R′ and (sw(w), w) ∈ R′ means that w ∈M) and continue by evaluating
the rest of the translation ( )′.

From the previous theorem, we immediately get:

Theorem 4.4.6. The satisfiability problem ofML(〈sw〉) is undecidable.

4.4.2 Global Swap

We define a computable function τ : FORMML( r©, k©) → FORMML(〈gsw〉) that reduces
the satisfiability problem ofML( r©, k©) to the satisfiability problem ofML(〈gsw〉).

As usual, the construction of τ proceeds in two steps. First, we enforce some
constraints on the structure of our translated models with a formula Struct that
enlarges the originalML( r©, k©)-model with a spy point as we did for the infinite
models of Section 3.4. And we also provide a translation Tr fromML( r©, k©)-formulas
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toML(〈gsw〉)-formulas that simulates the r© and k© operators: storing a point in
the memory is simulated by swapping the edge that connects the spy point with
point we want to memorize, and checking whether the current point of evaluation is
in the memory is simulated by checking if there is an edge pointing to the spy point.
Definition 4.4.7. Let ϕ be an ML( r©, k©)-formula that does not contain the
propositional symbol s. We define τ(ϕ) = Struct ∧ Tr(ϕ).

A model of τ(ϕ) for some ϕ is illustrated below:

ϕ . . .

s

In this picture, the black points and thick lines represent the model of the initial
memory logic formula that can be extracted from the whole model.

Let us now see how we can define Struct and Tr(ϕ) to make the reduction.
Definition 4.4.8. Let M = 〈W,R, V,M〉 be an ML( r©, k©)-model in which ϕ is
satisfied. We define Struct as the conjunction of several properties:

Struct = s ∧�(7)¬s (1′)
∧ ��[gsw][gsw]��(s→ ♦♦♦s) (2′)

Struct defines the structure of our translated models by enlarging the original
model with a spy point. Note that formulas (1′), (2′) are analogous to formulas of
the infinite models of Section 3.4; the main difference is that we don’t need to enforce
a non-empty set of points (♦>) and seriality (�♦>) in (1′), and in a similar way we
don’t need to enforce irreflexivity and transitivity. By removing these restrictions,
the formulas remain the same: (2′) ensures that the evaluation point is linked to
every point of the model except to itself, i.e., makes the evaluation point a “spy
point.”

The next proposition spells out the shape of the models we want to enforce.
Proposition 4.4.9. LetM = 〈W,R, V 〉 be a model without a memory and w ∈W .
IfM, w |= Struct, then the following properties hold:

1. w ∈ V (s) and for all state v ∈W such that v 6= w, if (w, v) ∈ R∗ then v /∈ V (s)
within 7 steps.

2. For all states v ∈ W such that v 6= w, if (w, v) ∈ R∗ then (w, v) ∈ R (w is a
spy point).

Proposition 4.4.9 enumerates the main properties of the spy point: it is the only
point that satisfies the propositional symbol s within 7 steps.

Now we introduce the translation ofML( r©, k©)-formulas toML(〈gsw〉)-formulas.
Definition 4.4.10. Given ϕ, we define Tr(ϕ) = ♦(ϕ)′, where ( )′ is defined as:

(⊥)′ = ⊥
(p)′ = p for p ∈ PROP appearing in ϕ
( k©)′ = ♦s
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′
(♦ψ)′ = ♦(¬s ∧ (ψ)′)
( r©ψ)′ = (¬♦s→ 〈gsw〉(♦s ∧ (ψ)′)) ∧ (♦s→ (ψ)′)
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Tr(ϕ) is similar to the translation of the global version of bridge: just replace
〈gsw〉 for 〈gbr〉 and it all works. r© is represented by swapping the edge that connects
the spy point with the point we want to memorize (instead of creating an arrow to
an s-point), and k© is represented by checking if the current point of evaluation can
access the spy point.

Theorem 4.4.11. Let ϕ be a formula of ML( r©, k©) that does not contain the
propositional symbol s. Then, ϕ is satisfiable if and only if τ(ϕ) is satisfiable.

Proof. (ϕ is sat ⇐ τ (ϕ) is sat) Suppose that τ(ϕ) is satisfiable, i.e., that there
exists a model M = 〈W,R, V 〉 and s ∈ W such that 〈W,R, V 〉, s |= Struct and
〈W,R, V 〉, s |= Tr(ϕ). We defineM′ = 〈W ′, R′, V ′, ∅〉, where

W ′ = {v′ | (s, v′) ∈ R}
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′ for p ∈ PROP

ThusM′ is extracted from the translated modelM, and because 〈W,R, V 〉, s |=
Tr(ϕ), there is w′ ∈ W ′ such that (s, w′) ∈ R and 〈W,R, V 〉, w′ |= (ϕ)′. We will
prove:

〈W ′, R′, V ′,M ′〉, v′ |= ψ iff 〈W,RM ′ , V 〉, v′ |= (ψ)′ (4.12)

where RM ′ = (R\S−1)∪S with S = {(m′, s) | m′ ∈M ′}. In particular, whenM ′ = ∅
we have that 〈W ′, R′, V ′, ∅〉, w′ |= ϕ iff 〈W,R, V 〉, w′ |= (ϕ)′.

We now prove (4.12) by structural induction on ψ. Boolean and modal cases are
easy, and it is also the case for k©. Let us prove the interesting case:

ψ = r©φ:
(⇐) Suppose that 〈W,RM ′ , V 〉, v′ |= ( r©φ)′. By definition of ( )′ and the
semantics we have the conjunction of the following formulas:

(1) 〈W,RM ′ , V 〉, v′ |= ¬♦s→ 〈gsw〉(♦s ∧ (φ)′)
(2) 〈W,RM ′ , V 〉, v′ |= ♦s→ (φ)′

We have to prove that 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We will prove it in two parts,
first assuming (1) and then assuming (2).
First, assume (1). Now suppose 〈W,RM ′ , V 〉, v′ |= ¬♦s, i.e, that (v′, s) /∈ RM ′ .
Then we have that 〈W,RM ′ , V 〉, v′ |= 〈gsw〉(♦s ∧ (φ)′). By the semantics and
our last assumption we have 〈W, (RM ′)∗v′s, V 〉, v′ |= ♦s∧(φ)′. The first conjunct
is trivial because (v′, s) ∈ (RM ′)∗v′s and by Proposition 4.4.9, so by applying
induction hypothesis on the second conjunct, and because we know v′ ∈ M ′
by definition of RM ′ , we have 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ. Hence by the
semantics we have 〈W ′, R′, V ′,M ′〉, v′ |= r©φ.
Finally, assume (2). Now suppose 〈W,RM ′ , V 〉, v′ |= ♦s, i.e, that (v′, s) ∈
RM ′ , which in turn also tell us that (s, v′) /∈ RM ′ , by definition of RM ′
and Proposition 4.4.9, and therefore v′ is in the memory. Then we have
that 〈W,RM ′ , V 〉, v′ |= (φ)′. By induction hypothesis and because we know
v′ ∈ M ′, we have 〈W ′, R′, V ′,M ′ ∪ {v′}〉, v′ |= φ, which is equivalent to
〈W ′, R′, V ′,M ′〉, v′ |= r©φ by the semantics.
(⇒) Suppose 〈W ′, R′, V ′,M ′〉, v′ |= r©φ. We have to prove 〈W,RM ′ , V 〉, v′ |=
( r©φ)′, i.e, we have to prove 〈W,RM ′ , V 〉, v′ |= ¬♦s → 〈gsw〉(♦s ∧ (φ)′) and
〈W,RM ′ , V 〉, v′ |= ♦s → (φ)′. It is easy to prove each part separately (steps
are similar to that of the (⇐) direction).
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(ϕ is sat ⇒ τ (ϕ) is sat) Suppose that ϕ is satisfiable, i.e., that there exists a
modelM = 〈W,R, V, ∅〉 and w ∈W such that 〈W,R, V, ∅〉, w |= ϕ. Let s be a state
that does not belong to W . Then we can defineM′ = 〈W ′, R′, V ′〉 as follows:

W ′ = W ∪ {s}
R′ = R ∪ {(s, w) | w ∈W}
V ′(p) = V (p) for p ∈ PROP appearing in ϕ
V ′(s) = {s}

By construction of M′ it is easy to check that 〈W ′, R′, V ′〉, s |= Struct, so it only
remains to see that 〈W ′, R′, V ′〉, s |= Tr(ϕ). We can verify that

〈W,R, V,M〉, w |= ϕ iff 〈W ′, R′M , V ′〉, s |= Tr(ϕ) (4.13)

where R′M = (R′\S−1) ∪ S with S = {(m, s) | m ∈M}.
We prove (4.13) by structural induction. The base cases, p and k©, are trivial;

the Boolean cases, ¬φ and φ∧χ, follow by induction hypothesis; and the modal case,
♦φ, is easy to prove. As for the r©φ case, note that if 〈W,R, V,M〉, w |= r©φ, we can
swap the edge (s, w) to simulate the storing of w in the memory (if (s, w) /∈ R′ and
(w, s) ∈ R′ means that w ∈M) and continue by evaluating the rest of the translation
( )′.

From the previous theorem, we immediately get:

Theorem 4.4.12. The satisfiability problem ofML(〈gsw〉) is undecidable.

To sum up, in this chapter we showed that all of the relation-changing logics are
undecidable. To prove that the satisfiability problem ofML(�) is undecidable, for
� ∈ {〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉, 〈sw〉, 〈gsw〉}, we made a reduction from the satisfiability
problem ofML( r©, k©) to the one ofML(�). To make the reductions we relied on
the spy point technique we presented in Chapter 3. The main idea was to simulate
the behavior ofML( r©, k©) without having an external memory. We simulated the
ability to store states in a memory with the ability to change the accessibility relation
of a model, and checking for membership in the memory was simulated by checking
for changes in the accessibility relation.

With these results we have determined the borderline between decidability and
undecidability for relation-changing logics, completing in this way the panorama we
presented in Table 2.1 at the end of Chapter 2.
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CHAPTER 5

Conclusions

In this thesis we have investigated the finite model property and the satisfiability
problem of a family of logics that we call relation-changing logics, which extend the
classical modal logic. We studied, in detail, modal operators that can delete, add,
and swap an edge in the accessibility relation of a model during evaluation. It is now
time to make a balance of what we have learned so far.

5.1 The Things We’ve Learned

We started this thesis by introducing modal and dynamic logics. In Chapter 1 we
gave a brief overview of the recent historical development of modal logic, strictly
understood as the logic of necessity and possibility, and particularly the historical
development of systems of modal logic both syntactically and semantically, from
Lewis’ pioneering work starting in 1918 to Kripke’s work in the early 1960’s. We also
introduced modal logic from a more contemporary perspective by introducing the
basic modal language along with a discussion of its computational properties. We then
introduced dynamic logics observing that, in this thesis, the term “dynamic” refers to
logics that can change the underlying structure, and we introduced dynamic epistemic
logic as an example. We discussed public announcement logic (PAL) and showed
that it can model the evolution of the knowledge of epistemic agents via updates to
the model representing their epistemic state. PAL is not the only epistemic logic
that can model dynamic behavior. For example, global and local graph modifiers are
introduced in [ABdCH09] and include operators that can add and delete states and
edges of the model. Another example is arrow update logic [KR11a, KR11b] which
has operators that can delete edges depending on their pre and postconditions. All
these examples show different forms of dynamics related to the topic of this thesis.
We noticed that even though dynamic operators have already been investigated in
the past, in this thesis we would focus on the behavior of those which can modify
the accessibility relation.

In Chapter 2 we presented the family of relation-changing logics. We introduced
the formal syntax and semantics of the sabotage, bridge, and swap logics, each
of them in a local and global version. Each language is a syntactic extension of
the basic modal logic with a dynamic operator. Semantics is based on Kripke
models and model variants, which are operations that modify the model capturing

61
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the behavior of the new syntactic operators. We observed that, even though the
semantics conditions look innocent, the behavior of the operators is quite complex.
Indeed, we presented some examples that describe complex properties in the models,
and we also pointed out to some references in the bibliography which show evidence
on their high expressive power.

In Chapter 3 we showed that relation-changing logics are more expressive that
the basic modal logic by proving they lack the finite model property. For each of the
sabotage, bridge, and swap logics, both with local and global effects, we enforced a
formula that can only be satisfied in an infinite model. To achieve this we used a spy
point technique, i.e, we forced a state of the model to be linked to every other state
of the model, and we used it to describe a serial, irreflexive, and transitive set of
states, implying that the models obtained are infinite. We observed that the ability
to enforce infinite models shows that relation-changing logics are quite expressive,
and that they could easily cross the border of decidability.

In Chapter 4 we demonstrated that the satisfiability problem for relation-changing
logics is undecidable. We attempted to determine undecidability in two different
ways: by encoding the N × N tiling problem, and by encoding the satisfiability
problem ofML( r©, k©). In this thesis, we decided to present the latter option. We
reduced the satisfiability problem ofML( r©, k©) to the one ofML(〈sb〉),ML(〈gsb〉),
ML(〈br〉),ML(〈gbr〉),ML(〈sw〉), andML(〈gsw〉). All the reductions followed the
same format: we presented a computable function which is divided in two parts. On
the one hand, it defines a formula that enforces some constraints in the shape of the
models using the spy point technique, to translateML( r©, k©)-models to standard
Kripke models. On the other hand, it defines a translation fromML( r©, k©)-formulas
to formulas of each relation-changing logic, to simulate the storing of a point in a
memory. In this way, we obtained undecidability results for the sabotage, bridge,
and swap logics, both in their local and global versions. The encodings obtained are
tricky, some being more involved than others.

Our work in this thesis ended in Chapter 4, but of course, determining the
decidability or undecidability of a logic is just a first step. If it is decidable, one is
interested in its complexity and in a practical algorithm. (Unfortunately, this is not
the case for relation-changing logics.) If it is undecidable, one may be theoretically
interested in its degree of undecidability in terms of recursion-theoretic hierarchies.
On the other hand, one may try to isolate a decidable fragment that is still expressive
enough to describe an interesting portion of the problems the logic was design for.
Although investigating the degree of undecidability of a logic is interesting, especially
if the undecidability results are obtained via tiling problems, for relation-changing
logics it would be interesting to isolate decidable fragments. In fact, attempts to
define new relation-changing logics that are decidable have been investigated, e.g.,
in [AvDFS14].

5.2 It’s Been an Exciting Adventure

Working on this thesis has been an amazing adventure. In this section I want to
explain how I ended up working on the topic of this thesis, sharing some of my
experiences along the way.

It all started at the Latin American Congress of Mathematicians (CLAM) in
August, 2012. The conference took place at the Faculty of Mathematics, Astronomy
and Physics (FaMAF) of the University of Córdoba (UNC), in Argentina, and was
jointly organized with the annual meeting of the Argentine Mathematical Union
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(UMA). I went traveling to Córdoba, along with some students of Mathematics from
Río Cuarto, to attend those conferences. At the CLAM, I attended a talk titled
“Logics to Describe and Change” given by Carlos Areces. That was when I first heard
about logics that could change the model, and to be honest, Carlos had really caught
my attention. I still remember how amazed I was with these logics. In the talk, he
presented some results on computational complexity and expressive power of swap
logic and memory logics, followed by a discussion of some open problems. I wanted
to know more about the topic so I asked Carlos if he could share the slides of his talk
with me, and he agreed and gave me his e-mail address so that I could ask for them.

During the last day of the conference I learned about a computational complexity
course that was going to take place at FaMAF during the next semester, and I was
really interested in it. Although that was the first time I visited FaMAF, I already
knew some people there from other conferences I had attended in previous years,
so I looked for them and talked to them (here I could name Franco Luque and
Ezequiel Orbe). They told me that the course was going to be taught by Guillaume
Hoffmann, but that day he wasn’t at FaMAF so I was given his e-mail address to
contact him. I returned to Río Cuarto, wrote to him, and a few weeks later I was
taking a computational complexity course at FaMAF.

Among the attendees of the course was Carlos Areces, because it turned out that
Guillaume Hoffmann was a former PhD student of his. Raul Fervari, with whom
I started studying my Master’s degree in Computer Science in Río Cuarto a long
time ago, showed up later on, because he had been on a trip to Poland for a few
months. So there they were, Guillaume Hoffman giving his course, and Carlos Areces
and Raul Fervari attending it. At that time, Raul was a PhD student under Carlos’
supervision, and it turned out that he was working with relation-changing logics in
his PhD thesis. As I already knew Raul, and because I remembered how much I
liked the topic of the talk Carlos gave at the CLAM, I asked Raul if we could talk to
Carlos to find out if I could work in my Master’s thesis on a topic related to modal
logics. So I asked Carlos and he agreed. The next week, we had a meeting with
Carlos, and even though I wasn’t sure what I was looking for, he knew how to guide
me to find a topic that interested me. Then we decided to work on the satisfiability
problem of the local version of the sabotage and bridge logics. I suppose that was
when this thesis started.

I was traveling to Córdoba once a week, usually on Thursdays. In the morn-
ings, we were gathering together with Carlos and Raul to talk about modal logics,
relation-changing logics, and the techniques to prove (un)decidability results. In the
afternoons, we were attending the computational complexity course with Guillaume.
This went on for almost three months, throughout the course, which was completed
by the end of the year. During this period, I had an incredible time learning about
modal logics and computational complexity. It was an exciting and very enriching
experience.

Once the course had finished, we stayed in contact with Carlos, Raul, and
Guillaume via e-mail. During this time, I worked mostly with Raul and Guillaume
exchanging countless e-mails and chats. They were able to read and bring comments
on any scribble I made, no matter how unpolished it was. Their feedback was
extremely helpful in gaining a good understanding on the behavior of relation-
changing logics which ultimately helped me write formulas to enforce infinite models
and to make the reductions in the undecidability proofs. Of course, we continued to
have occasional meetings with Carlos, Raul, and Guillaume in Córdoba, to polish
the results and bring all the pieces together. By mid 2013 the results of this thesis
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were ready.
Throughout this adventure I have read and learned a lot about logics, computabil-

ity and computational complexity, having a lot of fun in the process. Although it is
important to learn new things and obtain new results, I believe that it is even more
important to share them. Share your ideas, obstacles, and solutions. This is why I
submitted an abstract to give a talk at the annual meeting of the UMA, which took
place at the University of Rosario, Argentina, in September, 2013. So there I was,
one year after I had attended the talk that Carlos gave at the CLAM, giving my own
talk on the undecidability of relation-changing logics. I had the opportunity to share
my work in front of a diverse audience, and I really enjoyed it.

After the talk in Rosario, the writing process of the thesis began, and a couple of
months later, the first draft was ready. Today, I can say that it is now completed.

All in all, working on this thesis has been a challenging, exciting, and rewarding
experience. I learned fascinating things and met interesting people, and also gained
experience in research on a topic that really interests me. This is the end of this
adventure, but I think it is also the beginning of an even bigger one.



APPENDIX A

Basics of the Theory of Computation

We briefly introduce some basic concepts from computability and complexity theory
that are used in this thesis. More information can be found in classical textbooks
such as [LP97, Sip12, Pap94, AB09].

Computability Theory
To prove that some problem is not computable we need a robust mathematical model
of computability. One of the most widely used models is the Turing machine. Let f
be a function, and suppose we have fixed some convention about how the elements
of the domain and range of the function are to be represented. Then f is computable
(or recursive) if there is a Turing machine that when given (the representation of)
an item x in the domain of f will halt after finitely many steps, leaving on the tape
(the representation of) f(x).

We can use Turing machines to provide yes/no answers to problems. Many
logical problems (for example, if some formula ϕ is satisfiable or not) are of this type.
Suppose we have fixed the alphabet of a Turing machine, and have decided how we
are going to represent the problems we are interested in. (For example, in Chapter 6
of [BdRV01], it is shown how to encode modal formulas and models as strings of
0s and 1s.) Given the encodings, some strings over the alphabet represent problem
instances for which the answer is yes, while others represent problem instances for
which the answer is no. A problem is computable (or recursive, or decidable) if there
is a Turing machine which when given (the representation of) any instance of the
problem, halts after finitely many steps leaving (the representation of) the correct
answer on the tape.

Definition A.1 (Church’s Thesis). A problem is decidable precisely when it can
be solved using a Turing machine.

Church’s Thesis can be viewed as saying that computable problems are those
which can be solved by writing a program in your favorite programming language
when no limitations are placed on memory or execution time. In essence, Church’s
Thesis affirms that we do have a robust model of computation.

The most important benefit of having a robust definition of computability is
that it gives us a way of proving that some problem is undecidable. We can use the
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P = ∪c≥1DTIME(nc)
NP = ∪c≥1NDTIME(nc)

PSPACE = ∪c≥1PSPACE(nc)
EXPTIME = ∪c≥1DTIME(2nc)

NEXPTIME = ∪c≥1NDTIME(2nc)

Table A.1: Complexity classes.

definition of a Turing machine to prove undecidability, but it is usually easier to
show that problems are undecidable via reductions:

Definition A.2. Let Σ be an alphabet and let L1, L2 ⊆ Σ∗ be problems (we adapt
an abstract view of problems here). A reduction from L1 to L2 is a computable
function τ : Σ∗ → Σ∗ such that x ∈ L1 if and only if τ(x) ∈ L2.

The following theorem has been our main tool for proving undecidability.

Theorem A.3. Let L1, L2 ⊆ Σ∗ be problems, and τ a reduction from L1 to L2. If
L1 is undecidable, then so is L2.

Complexity Theory
Complexity theory studies the computational resources required to solve (decidable)
problems. The two main resources studied are time (the number of computation
steps required) and space (the amount of memory required). Both time and space
required are measured as functions of the length of the input.

Let T : N → N be some function. A problem L is in DTIME(T (n)) (in
PSPACE(T (n))) if and only if there is a Turing machine that runs in time (in
space) c · T (n) for some constant c > 0 and decides L. Similarly, we define the class
NDTIME(T (n)) (NPSPACE(T (n))) using non-deterministic Turing machines instead
of deterministic ones.

These notions can be used to define the complexity classes we mentioned in this
thesis, which are listed in Table A.1. Each of these classes is contained in the classes
appearing below it in the list. Although a problem that belongs to any of these
classes is decidable, P (the class at the bottom of this putative hierarchy) is widely
taken to be the class of problems that are tractable, or efficiently solvable.

In this thesis we mentioned often the class PSPACE, which is the complexity class
of most relevance to modal logic, and particularly, we characterized the complexity
of the model checking problems of our logics of interest as being PSPACE-complete.
So we end this appendix defining the concepts of hardness and completeness, but in
order to do that, we first introduce the notion of polynomial time reductions.

A polynomial time reduction is a reduction in the sense of Definition A.2, but
with τ being a polynomial time computable function. It follows that if L2 is solvable
in polynomial time (that is, if L2 is tractable), then so is L1. This is why we say in
this case that L2 is at least as hard as L1, and this observation leads us to our last
fundamental definition:

Definition A.4 (Hardness and Completeness). Let C be a class of problems.
A problem L is C -hard (with respect to polynomial time reductions) if every problem
in C is polynomial time reducible to L; L is C -complete if it is C -hard and moreover
L ∈ C. That is, the C -complete problems are the hardest problems in C.
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